Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
На примере системы второго порядка показан вариант обобщения понятия неосциляции решений скалярных разностных уравнений. Приведен критерий неосцилляции, основанный на пробных функциях.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.
-
Рассматривается начальная задача для линейной нестационарной управляемой системы дифференциально-разностных уравнений с тождественно вырожденной матрицей при производной искомой вектор-функции в главной части. Получены достаточные и необходимый и достаточный критерии полной управляемости такой системы на некотором отрезке из области определения. Основой для анализа послужило преобразование главной части к так называемой «эквивалентной форме», в которой разделены «дифференциальная» и «алгебраическая» составляющие.
-
Рассматривается линейная стационарная система функционально-разностных уравнений. В качестве аппроксимирующих конечномерных операторов рассматриваются отрезки представления Шмидта. Предлагается конструктивная процедура построения приближенных характеристических определителей.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.