Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.
-
Пусть $X_0\subseteq\mathbb R^n$ — непустое открытое множество и $X_0\subseteq X\subseteq\overline X_0$. Допускается, что множество $X_0$ не ограничено и/или имеет счетное число компонент связности. В работе исследуются некоторые пространства функций $f\colon X\to\mathbb R$, наделенные специальной нормой $\|\cdot\|$. В определении нормы фигурирует $n$-мерный вектор $(\Delta x)^{-1}\Delta f$, являющийся аналогом отношения $\frac{\Delta f}{\Delta x}$, порождающего понятие производной функции одной переменной. Вектор $(\Delta x)^{-1}\Delta f$ можно ассоциировать с вектором $\mathrm{grad}\,f(\cdot)$. Обратимая матрица $\Delta x$ порядка $n$ состоит из специальных приращений аргумента ${x\in \mathbb R^n}$, а вектор $\Delta f$ состоит из специальных приращений функции $f$. Доказан ряд свойств вектора $(\Delta x)^{-1}\Delta f$, получена точная формула для его евклидовой нормы. Доказана полнота по специальной норме $\|\cdot\|$ пространства $\mathcal G(X)$, состоящего из непрерывных ограниченных функций $f\colon X\to\mathbb R$ и имеющих дополнительные ограничения типа ограничений Липшица–Гёльдера. Подобные функции играют важную роль при решении задач математической физики. Исследован ряд актуальных подпространств пространства $\mathcal G(X)$, доказано, что два из них банаховы, одно из них при $n=1$ и при определенных условиях является замыканием пространства кусочно-линейных функций $f\colon X\to\mathbb R$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.