Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $X_0\subseteq\mathbb R^n$ — непустое открытое множество и $X_0\subseteq X\subseteq\overline X_0$. Допускается, что множество $X_0$ не ограничено и/или имеет счетное число компонент связности. В работе исследуются некоторые пространства функций $f\colon X\to\mathbb R$, наделенные специальной нормой $\|\cdot\|$. В определении нормы фигурирует $n$-мерный вектор $(\Delta x)^{-1}\Delta f$, являющийся аналогом отношения $\frac{\Delta f}{\Delta x}$, порождающего понятие производной функции одной переменной. Вектор $(\Delta x)^{-1}\Delta f$ можно ассоциировать с вектором $\mathrm{grad}\,f(\cdot)$. Обратимая матрица $\Delta x$ порядка $n$ состоит из специальных приращений аргумента ${x\in \mathbb R^n}$, а вектор $\Delta f$ состоит из специальных приращений функции $f$. Доказан ряд свойств вектора $(\Delta x)^{-1}\Delta f$, получена точная формула для его евклидовой нормы. Доказана полнота по специальной норме $\|\cdot\|$ пространства $\mathcal G(X)$, состоящего из непрерывных ограниченных функций $f\colon X\to\mathbb R$ и имеющих дополнительные ограничения типа ограничений Липшица–Гёльдера. Подобные функции играют важную роль при решении задач математической физики. Исследован ряд актуальных подпространств пространства $\mathcal G(X)$, доказано, что два из них банаховы, одно из них при $n=1$ и при определенных условиях является замыканием пространства кусочно-линейных функций $f\colon X\to\mathbb R$.
-
Исследовано однопараметрическое семейство квадратичных интерполяционных многочленов нескольких переменных. В роли параметра выступает точка n-мерного пространства. Исследованы вопросы существования и единственности интерполяционных многочленов. Для многочленов получено явное представление (в барицентрической системе координат). Показано, что лишь для одного-единственного параметра имеет место непрерывная стыковка интерполяционных многочленов, построенных на элементах триангуляции специального вида. Для интерполяционного многочлена, соответствующего данному параметру, получено явное представление в декартовой системе координат. Применение интерполяции с данным параметром позволяет осуществлять квадратичную сплайн-аппроксимацию функций многих переменных (одновременно с аппроксимацией поля градиента этой функции).
-
Приведены обоснование и процедура построения специальных многомерных сплайнов произвольной степени лагранжевого типа, названных λ-сплайнами. Они строятся из многомерных интерполяционных алгебраических многочленов фиксированной степени, заданных на симплексах специальной триангуляции области определения исходной функции.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.