Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.
-
Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.
-
Представлена классификация форм уравнений динамики систем связанных твёрдых тел со структурой дерева. В основе классификации – компактные матричные формы записи уравнений кинематики и динамики систем тел, полученные с использованием понятия матрицы кинематической структуры и геометрического подхода при описании относительного движения. Единая форма записи уравнений движения удобна для представления и сравнения различных подходов к моделированию динамики систем твёрдых тел. Приведён сравнительный анализ вычислительной эффективности различных методов составления и разрешения уравнений движения систем твёрдых тел.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.