Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'много преследователей':
Найдено статей: 3
  1. Изучается дифференциальная игра преследования со многими преследователями и одним убегающим. Игра описывается бесконечной системой $m$ инерционных уравнений. По определению преследование завершается, если состояние одной из систем и его производная равны нулю в некоторый момент времени. В литературе такое условие завершения игры называется мягкой посадкой. В терминах энергий игроков получено условие, которое является достаточным для завершения преследования в игре. Также построены стратегии преследующих, гарантирующие завершение преследования в игре.

  2. Рассматривается линейная стационарная задача преследования с участием группы преследователей и группы убегающих при условиях, что матрица системы является скалярной, среди преследователей имеются как участники, у которых множество допустимых управлений совпадает с множеством допустимых управлений убегающих, так и участники с меньшими возможностями. Множеством значений допустимых управлений убегающих является шар с центром в нуле. Цель группы преследователей состоит в том, чтобы «переловить» всех убегающих. Цель группы убегающих - помешать этому, то есть предоставить возможность по крайней мере одному из убегающих уклониться от встречи. Преследователи и убегающие используют кусочно-программные стратегии. Показано, что если в игре, в которой все участники обладают равными возможностями, происходит уклонение от встречи хотя бы одного убегающего на бесконечном промежутке времени, то добавление любого числа преследователей с меньшими возможностями приводит к тому, что хотя бы один из убегающих уклонится от встречи на любом конечном промежутке времени.

  3. Получены условия разрешимости задач преследования и уклонения в дифференциальной игре со многими участниками, обладающими простым движением.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref