Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается дифференциальная игра преследования со многими преследователями и одним убегающим. Игра описывается бесконечной системой $m$ инерционных уравнений. По определению преследование завершается, если состояние одной из систем и его производная равны нулю в некоторый момент времени. В литературе такое условие завершения игры называется мягкой посадкой. В терминах энергий игроков получено условие, которое является достаточным для завершения преследования в игре. Также построены стратегии преследующих, гарантирующие завершение преследования в игре.
-
Рассматривается линейная стационарная задача преследования с участием группы преследователей и группы убегающих при условиях, что матрица системы является скалярной, среди преследователей имеются как участники, у которых множество допустимых управлений совпадает с множеством допустимых управлений убегающих, так и участники с меньшими возможностями. Множеством значений допустимых управлений убегающих является шар с центром в нуле. Цель группы преследователей состоит в том, чтобы «переловить» всех убегающих. Цель группы убегающих - помешать этому, то есть предоставить возможность по крайней мере одному из убегающих уклониться от встречи. Преследователи и убегающие используют кусочно-программные стратегии. Показано, что если в игре, в которой все участники обладают равными возможностями, происходит уклонение от встречи хотя бы одного убегающего на бесконечном промежутке времени, то добавление любого числа преследователей с меньшими возможностями приводит к тому, что хотя бы один из убегающих уклонится от встречи на любом конечном промежутке времени.
-
Получены условия разрешимости задач преследования и уклонения в дифференциальной игре со многими участниками, обладающими простым движением.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.