Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Под термином «размыкание предиката» понимается сведение задачи поиска и изучения свойств множества истинности заданного предиката к задаче поиска и изучения свойств неподвижных точек некоторого отображения. Размыкание предиката дает дополнительные возможность анализа его множества истинности, а также позволяет строить элементы этого множества с теми или иными свойствами. Известны примеры размыкания нетривиальных предикатов, таких как предикат «быть стабильным (слабо инвариантным) множеством», предикат «быть неупреждающим селектором», предикат «быть седловой точкой», предикат «быть равновесием Нэша». В упомянутых случаях вопрос об априорной оценке возможности размыкания того или иного интересующего нас предиката и о построении соответствующего размыкающего отображения оставался за рамками рассмотрения: размыкающие отображения предоставлялись как готовые объекты. В предлагаемой заметке мы постараемся отчасти закрыть этот пробел: приводятся формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. Описываемый подход примен\'им во всех упомянутых выше положительных примерах. В качестве иллюстрации проведено следующее этому способу построение размыкающего отображения для предиката «быть нэшевским равновесием».
-
В работе разрабатывается метод, именуемый «размыкание предиката», сводящий задачу поиска множества истинности предиката к задаче поиска множества неподвижных точек некоторого (вообще говоря, многозначного) отображения. Предлагаемая техника дает дополнительные возможности анализа задач и построения решений путем систематического привлечения результатов теории неподвижных точек. Даны формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. В случае когда область определения предиката частично упорядочена, указаны способы построения размыкающих функций, обладающих свойством сужаемости. Это позволило получить представления интересующих элементов решения в виде итерационных пределов. Предлагаемый подход в силу абстрактности имеет широкую сферу применения. Вместе с тем эффективность полученного решения зависит от специфики рассматриваемой задачи и выбранного варианта реализации метода. В качестве иллюстрации в работе рассмотрена процедура построения размыкающего отображения для предиката «быть неупреждающим селектором». На основе этого отображения получено выражение для наибольшего неупреждающего селектора заданной мультифункции.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.