Об одном подходе к анализу множества истинности: размыкание предиката

 pdf (243K)

Под термином «размыкание предиката» понимается сведение задачи поиска и изучения свойств множества истинности заданного предиката к задаче поиска и изучения свойств неподвижных точек некоторого отображения. Размыкание предиката дает дополнительные возможность анализа его множества истинности, а также позволяет строить элементы этого множества с теми или иными свойствами. Известны примеры размыкания нетривиальных предикатов, таких как предикат «быть стабильным (слабо инвариантным) множеством», предикат «быть неупреждающим селектором», предикат «быть седловой точкой», предикат «быть равновесием Нэша». В упомянутых случаях вопрос об априорной оценке возможности размыкания того или иного интересующего нас предиката и о построении соответствующего размыкающего отображения оставался за рамками рассмотрения: размыкающие отображения предоставлялись как готовые объекты. В предлагаемой заметке мы постараемся отчасти закрыть этот пробел: приводятся формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. Описываемый подход примен\'им во всех упомянутых выше положительных примерах. В качестве иллюстрации проведено следующее этому способу построение размыкающего отображения для предиката «быть нэшевским равновесием».

Ключевые слова: множество истинности предиката, неподвижные точки отображения, равновесие Нэша
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2016, т. 26, вып. 4, с. 525-534
DOI: 10.20537/vm160407

An approach to analysis of the set of truth: unlocking of predicate

The term “predicate unlocking” is understood as the reduction of the problem of finding and studying the set of truth of a predicate to the problem of finding and studying the set of fix points of a map. Predicate unlocking provides opportunities for additional investigation of the truth set and also allows one to build the elements of this set with particular properties. There are examples of nontrivial predicate unlocking such as: the predicate “be a stable (weakly invariant) set”, the predicate “be a nonanticipatory selector”, the predicate “be a saddle point”, and the predicate “be a Nash equilibrium”. In these cases, the question of the a priori evaluation of the possibility of unlocking this or other predicate of interest and the question of constructing a corresponding unlocking map remained beyond consideration: the unlocking mappings were provided as ready-made objects. In this note we try to partly close this gap: we provide a formal definition of the predicate unlocking operation, methods for constructing and calculating of the unlocking mappings and their basic properties. As an illustration, the “routine” construction of unlocking mapping for the predicate “be a Nash equilibrium” is carried out. The described approach is far from universality, but, at least, it can be applied to all aforementioned positive examples.

Keywords: truth set of predicate, fixed points of map, Nash equilibrium
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2016, vol. 26, issue 4, pp. 525-534

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref