Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'модальная матрица':
Найдено статей: 2
  1. Рассматривается линейное однородное автономное дескрипторное уравнение с дискретным временем $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ c прямоугольными (в общем случае) матрицами $B_i.$ Такое уравнение возникает при исследовании задач управления системами со многими соизмеримыми запаздываниями в управлении: задачи 0-управляемости, задачи синтеза регулятора типа обратной связи, обеспечивающего успокоение решения исходной системы, задачи модальной управляемости (управляемости коэффициентов характеристического квазиполинома), задачи спектральной приводимости и задачи синтеза наблюдателей для двойственной системы наблюдения. Для изучаемого дескрипторного уравнения с дискретным временем на основе решения конечной цепочки однородных алгебраических систем построено описание подпространства начальных условий, для которых это уравнение разрешимо. Получено представление всех его решений в виде, позволяющем организовать вычислительный процесс для нахождения одного из решений этого уравнения. Изучены свойства этого уравнения, используемые в задачах синтеза регуляторов для непрерывных систем со многими соизмеримыми запаздываниями в управлении. Отличительной чертой представленного исследования изучаемого объекта является использование подхода, не требующего построения преобразований, приводящих матрицы исходного уравнения к различным каноническим формам.

  2. Приводится вывод уравнений динамики упругих тел, подверженных большому движению в составе многокомпонентной механической системы и малым деформациям. При выводе используется метод конечных элементов (МКЭ) и метод Крейга–Бэмптона для редукции матриц МКЭ-модели тела. Никаких дополнительных приближений не вводится, тем самым получаются наиболее общие уравнения в рассматриваемой постановке. Проводится анализ трудностей, возникающих на практике при использовании выведенных общих уравнений движения, предлагаются пути их преодоления. Представляется вывод модифицированных уравнений с использованием приближения, более общего по сравнению с общепринятым в литературе. Приводится пример программной реализации выведенных уравнений движения упругих конструкций.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref