Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'модели планет':
Найдено статей: 2
  1. Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.

  2. Кондратьев Б.П., Трубицына Н.Г., Опарин А.О., Соловьёва П.О.
    Неоднородный шар как модель планет. Внутренние точки максимального притяжения, с. 74-84

    Получен критерий существования точек перегиба для гравитационного потенциала внутри неоднородной сферической планеты. Согласно ему, точки перегиба (точки локального максимума силы притяжения) могут существовать только на таком расстоянии r от центра, где плотность вещества составляет две трети от средней плотности внутреннего шара с указанным радиусом. Критерий сформулирован  и для осевого момента инерции планеты.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref