Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Доказывается принцип максимума для терминальной задачи оптимизации нелинейной управляемой системы Гурса–Дарбу с полной каратеодориевской правой частью уравнения при общих условиях, позволяющих искать решения системы в классе функций с суммируемой в некоторой степени смешанной производной.
-
Рассматривается терминальная задача оптимизации нелинейной управляемой системы Гурса-Дарбу с полной каратеодориевской правой частью уравнения в случае, когда необходимо искать решения системы в классе функций с суммируемой в некоторой степени $p>1$ смешанной производной. Показывается, что если правая часть аффинна по производным и они в ней аддитивно отделены от управления, то вырождение поточечного принципа максимума (необходимого условия оптимальности первого порядка при игольчатом варьировании управления) всегда является сильным, то есть на особом управлении принципа максимума одновременно с принципом максимума вырождаются и условия оптимальности второго порядка. Приводятся необходимые условия оптимальности особых управлений в этой ситуации, обобщающие известные сходные условия, относящиеся к случаю решений с ограниченной смешанной производной и более гладких правых частей уравнений.
-
О вольтерровом обобщении метода монотонизации для нелинейных функционально-операторных уравнений, с. 84-99Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rn – измеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:
x = θ + AF[x], x ∈ Xℓ, (1)
где A : Zm → Xℓ – линейный ограниченный оператор, F : Xℓ → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.