Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Различные задачи управления пучками траекторий составляют важный объект изучения в современной математической теории управления. Такие задачи возникают, например, при изучении движения потока заряженных частиц, а также при наличии неполной информации о начальном состоянии управляемой системы. В настоящей статье для нелинейного управляемого объекта весьма общего вида на фиксированном отрезке времени $[0,T]$ рассматривается задача управления пучками траекторий при неодноточечном начальном множестве. На множестве достижимости в момент $T>0$ изучается задача максимизации заданной непрерывной функции. Эту задачу можно интерпретировать как задачу о разбросе траекторий управляемого объекта. Соответствующий максимум зависит от выбранного допустимого управления $u(\cdot )$. В статье обосновывается существование минимума на множестве допустимых управлений от этого максимума.
-
Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.
-
Об одной нелинейной задаче преследования с дискретным управлением и неполной информацией, с. 111-118Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является поимка, то есть приведение системы в любую заданную окрестность начала координат. Получены достаточные условия разрешимости задачи преследования в классе кусочно-программных стратегий преследователя. Также доказано, что независимо от действий убегающего время поимки стремится к нулю, если начальное состояние приближается к началу координат.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.