Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Статья посвящена малой нутации осесимметричного гироскопа в поле сил тяжести. Получено разложение известного решения уравнения нутации как функции времени, по степеням амплитуды. При этом частотами комбинационного колебания третьего порядка являются как утроенная частота, так и частота, совпадающая с исходной. Найдена формула для амплитуды нутации как функции интегралов движения гироскопа. Также вычислена частота бесконечно малой нутации. Другой способ получения разложения заключается в использовании результатов общей теории свободных одномерных колебаний. Этот способ основывается на возможности представить нутацию гироскопа как движение материальной точки единичной массы в поле, которое кубично-квадратично зависит от координаты. В этом случае единственной частотой комбинационного колебания третьего порядка является только утроенная исходная частота. Таким образом, оба способа дают одинаковый результат лишь для колебаний не выше второго порядка. В третьем приближении существующая теория колебаний недостаточна.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.