Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'неустойчивость течения':
Найдено статей: 5
  1. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

  2. Численно исследуются газодинамические процессы, протекающие в начальный момент работы сверхзвукового сопла с высокой степенью геометрического расширения. Основное внимание уделяется изучению механизмов потери течением осевой симметрии за счет неустойчивости образующихся в сверхзвуковой части сопла зон отрывного течения. Модель нестационарного течения вязкого теплопроводного сжимаемого газа по соплу основана на системе уравнений сохранения в форме Навье-Стокса. Турбулентность исследуемого течения моделируется методом отсоединенных вихрей DES и его модификацией DDES с привлечением полуэмпирической модели Спаларта-Аллмараса. Выполнено сравнение распределения давления на стенке сопла, проекции годографа вектора тяги, мгновенных и осредненных картин течения с экспериментальными данными и численными результатами других авторов. Показано, что применение вихреразрешающего моделирования DES и DDES позволяет адекватно описать основные особенности течения и воспроизвести феномен возникновения боковой составляющей тяги сверхзвукового сопла при приемлемом уровне вычислительных затрат.

  3. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

  4. Рассматривается двухслойная система, состоящая из слоя пористой среды конечной толщины и слоя однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как недеформируемая. Исследуется влияние процесса вымывания растворенной примеси, содержащейся в жидкости, заполняющей слой пористой среды, на устойчивость стационарного плоскопараллельного течения однородной жидкости над ним. Пористая среда описывается моделью Бринкмана с условиями Ошоа-Тапия-Уитейкера на границе раздела потоков. Получено точное и приближенное решение для профиля концентрации примеси. В приближении «замороженного» распределения концентрации найден квазистационарный профиль скорости течения в системе. Проведено численное исследование линейной задачи устойчивости течения в широком диапазоне различных параметров задачи. При достижении достаточной скорости течения в системе развиваются колебательные возмущения, приводящие к развитию бегущих волн на границе раздела. Показано, что учет конвективного и диффузионного транспорта примеси практически не оказывает влияния на структуру нейтральных кривых и критические числа Рейнольдса.

  5. Работа посвящена изучению устойчивости стационарных локализованных мод (солитонов щелевого типа) в одномерном нелинейном уравнении Шрёдингера (НУШ) с периодическим потенциалом и отталкивающей нелинейностью. Рассмотрены два класса решений: связанное состояние пары простейших щелевых солитонов из первой запрещенной зоны линейного спектра, находящихся в одной фазе или в противофазе и разделенных некоторым количеством пустых потенциальных ям. Для таких решений с помощью метода коллокации Фурье (Fourier collocation method) и метода функции Эванса (Evans function method) посчитаны линейные спектры задачи об устойчивости. Обнаружено, что если число разделяющих потенциальных ям между щелевыми солитонами нечетно (четно), то решения в одной фазе (в противофазе) экспоненциально неустойчивы. В этом случае, действительные части неустойчивых собственных значений в соответствующих спектрах экспоненциально убывают с ростом числа разделяющих периодов между щелевыми солитонами. С другой стороны, если число разделяющих потенциальных ям четно (нечетно), то решения в одной фазе (в противофазе) линейно устойчивы вдали от верхней границы первой запрещенной зоны, либо демонстрируют слабую осцилляторную неустойчивость вблизи границы запрещенной зоны. Для проверки результатов линейного анализа, был проведен численный счет НУШ с помощью конечно-разностной схемы. В результате эволюции, все рассмотренные в работе экспоненциально неустойчивые щелевые солитоны деформировались в пульсирующие объекты, тогда как устойчивые решения сохранили свой профиль в течение всего времени эксперимента.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref