Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
-
Рассматривается структурированная популяция, особи которой разделены на возрастные или типические группы, заданная нормальной автономной системой разностных уравнений. Для данной популяции исследуется задача оптимального сбора возобновляемого ресурса на конечном или бесконечном промежутках времени. Для популяции, эксплуатируемой на конечном промежутке, описана стратегия промысла, при которой достигается наибольшее значение общей стоимости изымаемого ресурса. Если же добыча ресурса происходит на неограниченном промежутке, то определяется средняя временная выгода и вычисляется ее значение при стационарном режиме эксплуатации; рассматриваются случаи, когда система имеет асимптотически устойчивую неподвижную точку или устойчивый цикл. Также описана стратегия промысла, которая является оптимальной среди других способов эксплуатации; показано, что при определенных условиях она является стационарной или отличается от стационарной только значением управления в начальный момент времени. Результаты работы проиллюстрированы на примере двухвозрастной эксплуатируемой популяции, в которой промысловому изъятию подвержены особи или младшей, или обеих возрастных групп.
-
Рассматривается терминальная задача оптимизации нелинейной управляемой системы Гурса-Дарбу с полной каратеодориевской правой частью уравнения в случае, когда необходимо искать решения системы в классе функций с суммируемой в некоторой степени $p>1$ смешанной производной. Показывается, что если правая часть аффинна по производным и они в ней аддитивно отделены от управления, то вырождение поточечного принципа максимума (необходимого условия оптимальности первого порядка при игольчатом варьировании управления) всегда является сильным, то есть на особом управлении принципа максимума одновременно с принципом максимума вырождаются и условия оптимальности второго порядка. Приводятся необходимые условия оптимальности особых управлений в этой ситуации, обобщающие известные сходные условия, относящиеся к случаю решений с ограниченной смешанной производной и более гладких правых частей уравнений.
-
Структурная устойчивость логарифмических спиралей в задачах управления с особой экстремалью второго порядка, с. 117-128Исследуется структурная устойчивость логарифмических спиралей в обобщении задачи Фуллера на случай управления из круга. Рассматривается малое возмущение относительно действия группы симметрий невозмущенной задачи. Для возмущенной задачи показано, что в окрестности особой экстремали второго порядка сохраняются экстремали в виде логарифмических спиралей. Построенные экстремали приходят на особую экстремаль за конечное время, при этом управления совершают бесконечное число оборотов вдоль окружности.
-
Показано, что для широкого класса распределенных оптимизационных задач характерно сильное вырождение особых управлений поточечного принципа максимума, когда вместе с принципом максимума, который можно рассматривать как необходимое условие оптимальности первого порядка при игольчатом варьировании управлений, вырождаются и необходимые условия второго порядка. Описан способ получения содержательных необходимых условий оптимальности сильно вырожденных особых управлений.
-
В работе строится расширение конфликтно-управляемых задач на бесконечном промежутке. Соответствующее расширение является проективным пределом сужений исходной игры на ограниченные промежутки времени. Существование максимина в такой расширенной игре эквивалентно нечувствительности исходной игры к расширению целевого множества. Особое внимание в работе уделяется игре сближения-уклонения в паре "смешанное управление / обобщенное управление".
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.