Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'параболические сети':
Найдено статей: 2
  1. Натия Н., Амуля Смырна Ч.
    Бесконечные сети Шрёдингера, с. 640-650

    Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.

  2. Маниваннан В.Р., Венкатараман М.
    $\Delta$-функции на рекуррентных случайных блужданиях, с. 119-129

    Если случайное блуждание на бесконечном счетном пространстве состояний обратимо, то известны необходимые и достаточные условия для того, чтобы это блуждание было рекуррентным. Если отбросить условие обратимости, то, используя дискретные решения Дирихле и выметание (понятия, известные из теории потенциала), можно частично установить некоторые из приведенных выше результатов, касающихся повторяемости и переходности случайного блуждания.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref