Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'полиномиальная случайная последовательность':
Найдено статей: 1
  1. Настоящая работа посвящена исследованию асимптотических свойств числа серий в последовательности дискретных случайных величин, управляемых цепью Маркова с конечным числом состояний. Состояние цепи на каждом шаге определяет закон распределения знаков в управляемой последовательности на этом шаге. Такая случайная последовательность представляет собой модель скрытой марковской цепи. При помощи метода Чена-Стена получена оценка расстояния по вариации между распределением числа серий длины не меньше заданной в случайной последовательности, управляемой цепью Маркова, и сопровождающим распределением Пуассона. Для ее вывода сначала рассматривалась последовательность из независимых неоднородных полиномиальных случайных величин, а затем использован прием, позволяющий получить оценку расстояния по вариации между смешанным пуассоновским распределением и пуассоновским распределением с параметром, равным среднему числу серий длины не меньше заданной. Эта оценка строится на основе дисперсии параметра смешанного пуассоновского распределения и выведенной ранее оценки для расстояния по вариации для полиномиальной схемы. Отдельно рассмотрен случай стационарной цепи Маркова. При помощи полученных оценок доказаны пуассоновская и нормальная предельные теоремы для числа серий длины не меньше заданной, а также найдено предельное распределение для наибольшей длины серии в управляемой случайной последовательности.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref