Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.
-
Задача простого группового преследования с возможным нарушением в динамике и фазовыми ограничениями, с. 82-95В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$\dot z_i = a_i(t) u_i - v,\quad u_i\in U_i,\quad v\in V,$$ где функции $a_i(t)$ равны 1 при всех $t$, за исключением некоторого отрезка заданной длины, на котором они равны нулю (для каждого преследователя свой отрезок). Этот факт можно трактовать так, что у каждого из преследователей возможен отказ в работе управляющего устройства в любой заранее неизвестный момент времени, а длина промежутка времени, необходимого на устранение поломки, задана, при этом в процессе устранения поломки преследователи не имеют возможности осуществлять поимку. Целевые множества — выпуклые компакты, убегающий не покидает пределы выпуклого многогранного множества. Получены достаточные условия разрешимости задачи преследования.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.