Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'принцип сжимающих отображений':
Найдено статей: 3
  1. Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.

  2. В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.

  3. В работе рассматриваются нелинейные дифференциальные уравнения $n$-го порядка с младшей производной. При помощи принципа сжимающих отображений исследуется асимптотическая эквивалентность решений этих уравнений в случае экспоненциальной эквивалентности их правых частей. Полученные достаточные условия асимптотической эквивалентности решений являются продолжением и обобщением результатов, изложенных в предыдущих работах автора. Приводится результат, описывающий асимптотическое поведение всех стремящихся к нулю на бесконечности решений дифференциального уравнения второго порядка с регулярной нелинейностью типа Эмдена-Фаулера и нулевой правой частью, возникающего при исследовании квазилинейных эллиптических уравнений. На его основе описывается асимптотическое поведение решений соответствующего уравнения с ненулевой правой частью.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref