Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О классификации особенностей, эквивариантно простых относительно представлений циклических групп, с. 155-159Рассматривается задача классификации ростков функций $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$, эквивариантно простых относительно различных представлений конечной циклической группы $\mathbb{Z}_m$, $m\geqslant 3$, на пространствах $\mathbb{C}^n$ и $\mathbb{C}$, с точностью до эквивариантных автоморфизмов $\mathbb{C}^n$. В случае согласованных скалярных действий группы доказано, что при $n\geqslant 2$ эквивариантно простых ростков не существует. Этот результат обобщается на случаи, когда действие группы по нескольким переменным в $\mathbb{C}^n$ совпадает с действием группы в $\mathbb{C}$. Кроме того, доказано, что в случае несогласованных скалярных действий группы $\mathbb{Z}_3$ на $\mathbb{C}^2$ и $\mathbb{C}$ всякий эквивариантно простой росток эквивалентен одному из ростков $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
-
Исследуются спектральные свойства дискретного оператора Шредингера для бесконечной полосы с нулевыми граничными условиями. Доказано, что для малых убывающих потенциалов вблизи особенностей невозмущенной функции Грина (граничных точек подзон) возникают собственные значения и резонансы, найдена их асимптотика. Описана картина рассеяния; явление дифракции (рассеяние, главным образом, по конечному числу выделенных направлений) трансформируется в рассматриваемой квазиодномерной системе в волны во времени вероятностей прохождения и отражения. Получены простые формулы для данных вероятностей вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.
-
В предыдущей работе автора определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.
Получено альтернативное представление для невязки, представляющее собой положительно определенную квадратичную форму от новых конечных разностей, заданных на границе. Элементы матрицы формы выражаются через многочлены Чебышёва, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω∈[-1,1]. Показано, что наилучшее приближение дает параметр ω=0, а невязка стремится к нулю с ростом N.
-
Точное решение одной задачи оптимизации, порожденной простейшим уравнением теплопроводности, с. 141-156В предыдущей работе авторов определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего уравнения теплопроводности предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.
Получено альтернативное представление для невязки, представляющее собой сумму двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Матрица первой формы имеет второй порядок и очевидный спектр. Элементы второй матрицы порядка N + 1 выражаются через многочлены Чебышева, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω ∈ [−1, 1]. Показано, что наилучшее приближение дает параметр ω = 0, а невязка стремится к нулю с ростом N.
-
О линейном алгоритме численного решения краевой задачи для простейшего волнового уравнения, с. 126-144Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.