Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена использованию регулярных выражений при распознавании рукописных математических текстов. Основная проблема в распознавании рукописных математических формул состоит в том, что эти тексты, как правило, состоят из большого числа маленьких фрагментов, расположенных в соответствии с некоторыми строгими правилами. Несмотря на то, что формальное определение синтаксиса математических текстов может вовлекать бесконтекстные грамматики и даже более сложные конструкции, на практике часто для успешного распознавания достаточно определения математического языка на базе регулярных выражений. Поскольку некоторые конструкции в математических текстах могут встречаться чаще других, мы вводим понятие взвешенного регулярного выражения. Веса в нём определяют предпочтение одних конструкций перед другими. В работе вводится математический аппарат для использования таких выражений при распознавании. В частности, доказываются теоремы о пересечении взвешенных множеств, задаваемых такими регулярными выражениями. Даются некоторые оценки сложности работы алгоритмов использующих такие регулярные выражения для распознавания.
-
Дескрипционная логика на графах изображений, с. 582-594В работе предлагается для формального описания и структурного анализа изображений использовать расширение $ \mathcal{ALC}(GI)$ дескрипционной логики $ \mathcal{ALC} $. Концепты и роли логики $ \mathcal{ALC} (GI)$ интерпретируются на графе изображения и его подграфах. Описана модель изображения в виде многослойного атрибутивного графа. Граф изображения содержит слой цветовых сегментов, слой границ, слой скелетонов. Каждый слой представляет собой планарный граф, слои связаны между собой отношениями «предок-потомок». Переход от пиксельного представления изображения к графовому позволяет существенно увеличить эффективность его анализа. Приведены примеры предметных терминологических аксиом, определяющих структурные элементы изображения и составленные из них буквы, а также результаты эксперимента, проведенного на задаче распознавания букв в слитном рукописном тексте.
-
Рассматривается задача распознавания рукописных текстов с растровых изображений. Описывается метод восстановления последовательности записи рукописного текста, который позволит свести задачу offline-распознавания к задаче online-распознавания. Метод заключается в поиске эйлерова пути с минимальным весом в графе скелета рукописных символов. В качестве весов рассматриваются некоторые числовые характеристики, отражающие сложность перехода из одного ребра в другое через общую вершину. Для этого строится таблица всевозможных комбинаций пар. При отсутствии в исходном графе эйлерова пути выполняется поиск пути с минимальным числом разрывов. Для разбиения ребер на пары и вычисления весов в вершинах нечетной кратности вводится понятие виртуального ребра, переход по которому означает образование разрыва в пути. Рассматривается алгоритм поиска пути в скелете символа, основанный на алгоритме Флери поиска эйлерова пути.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.