Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Предложена математическая модель динамики популяций хищника и жертвы в виде гибридной динамической системы, состоящей из двух двумерных систем, переключающихся между собой. Переключения систем позволяют моделировать особый режим убежища (refuge), при котором число жертв слишком мало, и хищникам трудно их обнаружить. Исследованы режимы скольжения по методу Филиппова. Проведена регуляризация представленной модели посредством использования двух линий переключения с целью избежать очень частых переключения (chattering) между системами. Для регуляризованной модели найдены предельные множества. Предложен сценарий самоорганизации системы, при котором невозможен неограниченный рост популяций. Проводится исследование чувствительности по отношению к параметру, задающему линии переключения. Важным результатом исследования является то, что при достаточно малом изменении линий переключения качественное поведение системы сохраняется.
-
Представлены математические модели процессов течения и деформирования материалов с эволюционизирующей структурой. Задачи охватывают широкий круг структурночувствительных объектов от порошковых систем до полимерных материалов и композитов на их основе. Указанные модели позволяют определять изменение деформационных, тепловых и структурных характеристик многообразных систем в процессе разнообразных режимов обработки отверждения, течения неньютоновской жидкости, твердофазной экструзии.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.