Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'система реакции-диффузии':
Найдено статей: 4
  1. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

  2. Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.

  3. В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.

  4. Классическая система реакции-диффузиисистема Шнакенберга — рассматривается в ограниченной области $m$-мерного пространства, на границе которой предполагаются выполненными краевые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая при изменении коэффициента диффузии $d.$ Путем анализа линеаризованной системы в бездиффузионном и диффузионном приближениях получено аналитическое описание области необходимых и достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что одна из границ области необходимых условий является огибающей семейства кривых, ограничивающих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рассматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение критического коэффициента диффузии, при котором происходит потеря устойчивости положения равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соответствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось $d>1$ можно представить в виде счетного объединения полуинтервалов, каждому из которых соответствует минимальное волновое число, при котором происходит потеря устойчивости, причем точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматриваемой области.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref