Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'конвекция':
Найдено статей: 15
  1. Казак О.В., Галенко П.К., Александров Д.В.
    Влияние конвективного потока на рост чистого и сплавного дендрита, с. 299-311

    В настоящей работе приведена модель анизотропного роста дендритных кристаллов из химически чистой и бинарной жидкости (раствора или расплава) с учетом вынужденной конвекции жидкой фазы. Представлены зависимости скорости роста и радиуса вершины дендрита от переохлаждения жидкости для случаев химически чистого материала и с учетом примесей. Дан сравнительный анализ влияния вынужденной конвекции на кинетику роста дендритов. Для оценки скорости роста и морфологии дендрита используется модель высокоскоростного роста дендритов, которая учитывает вклад конвективного потока и анизотропные свойства границы раздела кристалл-жидкость. В модели также используется гиперболическое уравнение диффузии для описания неравновесного захвата примеси поверхностью кристалла, которое возникает при быстром росте кристаллов.

  2. В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.

  3. Рассматривается трехмерная бидиффузионная конвекция валикового типа в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа. Методом многомасштабных разложений получена AΨ-система амплитудных уравнений, описывающая вариации амплитуды конвективных ячеек. Ширина ячеек может быть произвольной, что актуально для больших чисел Рэлея. Отмечается, что в трехмерном случае взаимодействие конвекции и поля горизонтальной завихренности играет существеннуюроль в динамике системы, и им нельзя пренебрегать. Обсуждаются различные формы выведенных уравнений.

  4. Проведен численный анализ сопряженной естественной конвекции в пористой среде, насыщенной газом, окруженной твердыми стенками конечной толщины при наличии локального источника тепла. Краевая задач сформулирована в безразмерных переменных "функция тока - вектор завихренности - температура" и решена методом конечных разностей. Установлены масштабы влияние источника тепла, проницаемости внутреннего объема, фактора нестационарности и теплофизических характеристик ограждающих стенок на режимы течения и теплопереноса.

  5. Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.

    Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.

  6. Рассмотрен альтернативный способ описания реакционно-диффузионных систем химической кинетики  на основе обыкновенных дифференциальных уравнений. В рамках данного подхода учёт диффузии вещества и переноса тепла в модели осуществляется без перехода к частным производным, а только за счёт увеличения количества переменных и аддитивных поправок в исходные уравнения. При этом в качестве базовой модели химической кинетики для данной работы была выбрана модель, лишённая недостатков классических моделей химической кинетики, таких как несогласованность уравнений по размерности или масштабу.

  7. Рассматривается трехмерная бидиффузионная конвекция в бесконечном плоском слое несжимаемой жидкости в окрестности точек бифуркации Хопфа. Методом многомасштабных разложений выведена система амплитудных уравнений для горизонтальных вариаций амплитуды конвективных ячеек квадратного типа. Уделено внимание взаимодействию конвекции с горизонтальным вихрем. Обсуждаются различные частные случаи получившихся уравнений.

  8. В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.

  9. Предложен подход к получению точных решений неоднородных дифференциальных уравнений в частных производных. Показано, что если правая часть уравнения задает поверхность уровня для решения уравнения, то в рамках этого подхода поиск решений рассматриваемого неоднородного уравнения сводится к решению обыкновенного дифференциального уравнения (ОДУ). В противном случае поиск решений уравнения приводит к решению системы ОДУ. Получение системы ОДУ опирается на наличие в рассматриваемом уравнении первых производных от искомой функции. Для уравнений в частных производных, которые явно не содержат первые производные искомой функции, предложена подстановка, позволяющая получить такие члены в уравнении. Чтобы свести исходное уравнение, содержащее первые производные от искомой функции, к системе ОДУ, рассматривается связанная с ним система двух уравнений в частных производных. Первое уравнение системы содержит в левой части частные производные только первого порядка, выбранные из исходного уравнения, в правой части - произвольную функцию, аргументом которой является искомая функция. Второе уравнение содержит члены исходного уравнения, не вошедшие в первое уравнение системы, и правую часть первого уравнения формируемой системы. Решение исходного уравнения сводится к поиску решения первого уравнения полученной системы уравнений в частных производных, обращающего в тождество второе уравнение системы. Такое решение удается найти, используя расширенную систему уравнений характеристик для первого уравнения и произвол в выборе функции из правой части этого уравнения. Описанный подход применен для получения некоторых точных решений уравнения Пуассона, уравнения Монжа-Ампера и уравнения конвекции-диффузии.

  10. Сформулирована математическая модель обтекания дендрита наклонным потоком вязкой жидкости в гидродинамическом приближении Осеена. Построено аналитическое решение задачи об обтекании параболического дендрита наклонным потоком жидкости в двумерном и трехмерном случаях. В лабораторной системе координат определены компоненты скорости жидкости вблизи вершины дендрита в двумерной и трехмерной геометриях течения с использованием криволинейных координат параболического цилиндра и параболоида вращения. Аналитические решения гидродинамических уравнений Осеена переписаны в системе координат растущего с постоянной скоростью дендрита. В предельном случае нулевого угла между направлением скорости жидкости вдали от дендрита и его осью найденное решение переходит в ранее известное. Проиллюстрирована зависимость приведенной компоненты скорости жидкости от параболических координат при различных коэффициентах наклона течения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref