Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'скорость ветра':
Найдено статей: 2
  1. Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.

  2. При движении тяжелой частицы в вязкой среде сила сопротивления, вообще говоря, зависит от числа Рейнольдса, следовательно, от модуля вектора скорости частицы относительно среды. Это приводит к нелинейному взаимодействию разных составляющих движения. Если оседающая в поле силы тяжести частица имеет и горизонтальную составляющую скорости, то эти две компоненты движения, влияя на число Рейнольдса, вносят вклад в коэффициент гидродинамического сопротивления и тем самым воздействуют друг на друга. Это может иметь значение, например, в приводном слое атмосферы при сильных ветрах, когда, вследствие упомянутого взаимодействия, время пребывания брызг в воздухе зависит, вообще говоря, и от их горизонтального движения. Для конкретного закона сопротивления исследована нелинейная модель взаимодействия двух составляющих движения. Расчеты показывают, что, хотя порядок величины скорости оседания частицы при учете этого взаимодействия не меняется, поправки к скорости могут быть заметными.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref