Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'сопряженный оператор':
Найдено статей: 3
  1. Кузнецов С.П., Мочалов В.В., Чуев В.П.
    О теореме Паули в алгебрах Клиффорда нечетной размерности, с. 44-61

    В действительных алгебрах Клиффорда нечетной размерности исследуется теорема Паули. В алгебрах Клиффорда $R_{3,0}$ и $R_{5,0}$ дается алгоритм построения оператора Паули. Этот алгоритм переносится на произвольную алгебру Клиффорда нечетной размерности $R_{p,q+1}$ ($R_{p+1,q}$). Получена итерационная формула для нахождения оператора Паули. Показано, что проблема построения оператора Паули связана с проблемой делителей нуля в алгебрах Клиффорда. При построении операторов Паули используется два вида сопряжения: сопряжение Клиффорда и сопряжение «реверс». Если $p+q+1\equiv 3\pmod 4$, то при построении оператора Паули используется сопряжение Клиффорда, если $p+q+1\equiv 1 \pmod 4$, то используется сопряжение «реверс».

  2. Предлагается описание сопряженного оператора к оператору, соответствующему линейной многоточечной краевой задаче для квазидифференциального уравнения, обладающее свойствами: исходный и сопряженный к нему оператор действуют из одного и того же рефлексивного банахова пространства в сопряженное банахово пространство; сопряженный оператор также соответствует некоторой линейной многоточечной краевой задаче для квазидифференциального уравнения.

  3. В работе исследуются нелокальные краевые задачи со смещением и разрывными условиями сопряжения на линии изменения типа для модельного нагруженного уравнения смешанного гиперболо-параболического типа. В параболической области уравнение представляет собой уравнение дробной диффузии, в гиперболической - характеристически нагруженное волновое уравнение. Единственность решения исследуемых задач при определенных условиях на коэффициенты задачи доказывается методом Трикоми. Существование решения задач сводится к решению интегрального уравнения Фредгольма второго рода относительно следа искомого решения на линии изменения типа. Однозначная разрешимость интегрального уравнения следует из единственности решения задач. После решения интегрального уравнения решение задач сводится к решению первой краевой задачи для уравнения дробной диффузии в параболической области и решению задачи Коши для неоднородного волнового уравнения в гиперболической. Выписаны формулы представления решений исследуемых задач в параболической и гиперболической областях.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref