Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'тождество Лагранжа':
Найдено статей: 2
  1. В данной работе рассматриваются системы материальных точек в евклидовом пространстве, взаимодействующих как друг с другом, так и с внешним полем. В частности, рассматриваются системы частиц, взаимодействие между которыми описывается однородным потенциалом степени однородности α=-2. Для этих систем существует дополнительная скрытая симметрия, которой соответствует первый интеграл движения, называемый нами интегралом Якоби. Данный интеграл указывался ранее в различных работах, начиная с Якоби, однако мы приводим его в более общем виде.

  2. В данной работе рассматриваются системы материальных точек в евклидовом пространстве, взаимодействующих как друг с другом, так и с внешним полем. Для случая произвольного парного взаимодействия между телами, зависящего только от их взаимного расстояния, указаны новые интегралы, образующие вектор галилеева момента. Приведена соответствующая алгебра интегралов, которую образуют интегралы импульса, момента импульса игалилеева момента.

    Рассмотрены  системы частиц, взаимодействие между которыми описывается однородным потенциалом степени однородности α=-2. Для этих систем приведена наиболее общая форма дополнительного первого интеграла движения, называемого нами интегралом Якоби. Указана новая нелинейная алгебра интегралов, включающая интеграл Якоби. Систематически описана новая процедура редукции и возможность ее применения в динамике для понижения
    порядка гамильтоновых систем.

    В статье также приводится ряд новых интегрируемых и суперинтегрируемых систем, являющихся обобщением классических. Приведен ряд обобщений тождества Лагранжа для систем с однородным потенциалом степени однородности α=-2, а также с помощью компьютерных экспериментов доказана неинтегрируемость задачи Якоби на плоскости.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref