Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'ударная волна':
Найдено статей: 5
  1. Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.

  2. Разработаны математические модели и сформулирована нелинейная краевая задача динамики тонкостенных оболочечных конструкций произвольной формы под действием ударного импульсного нагружения. Приводятся результаты моделирования нелинейных волновых процессов в составной оболочечной конструкции под действием взрыва.

  3. Сформулирована и решена в общей постановке сопряженная задача об ударном локальном взаимодействии жидкости с нелинейной деформируемой, повреждаемой средой при наличии конечных деформаций. Воздействие жидкости рассмотрено в виде ударной волны или высокоскоростной струи, образующихся при разрушении кавитационных пузырьков вследствие осесимметричного или кумулятивного их обжатия на фронте распространяющейся ударной волны. Особое внимание при этом уделено влиянию смачиваемости деформируемой поверхности.

  4. Приводится вычислительный алгоритм высокого порядка точности для решения задач аэродинамики и газовой динамики. Метод прямого численного моделирования основан на применении современных схем WENO при аппроксимации по пространству конвективных слагаемых и первых производных системы полных уравнений Навье-Стокса. Вторые производные и диффузионные члены уравнений разрешаются с помощью центрально-разностной схемы высокого порядка точности. Результаты моделирования с использованием метода демонстрируются на примере решения двух задач. Показывается, что вычислительные алгоритмы адекватно воспроизводят физические эффекты, свойственные как дозвуковым течениям (вихревые дорожки), так и сверхзвуковым потокам (разрывы параметров, ударные волны, скачки уплотнения).

  5. С помощью упрощенного метода возмущений исследуется влияние взаимодействия между пузырьками на распространение волн в однородном слабосжимаемом вязкоупругом пузырьковом потоке. С использованием подхода сохранения кинетической энергии выводится уравнение динамики пузырьков. Динамика пузырьков и уравнения смеси в сочетании с уравнением состояния газа позволяют исследовать явление распространения ударной волны в смеси. Выведено двумерное уравнение Кортевега-де Фриза-Бюргера в терминах профиля давления. Установлено, что при использовании рассматриваемых нами параметров взаимодействие между пузырьками не оказывает влияния.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref