Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
-
Результаты исследований Е.Л. Тонкова и Е.А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ заданное непрерывной функцией $t\rightarrow M(t)$, где для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.
-
Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.
-
Данная работа посвящена исследованию инвариантных множеств управляемых систем с импульсными воздействиями, параметризованных метрической динамической системой. Такими системами описываются различные стохастические модели популяционной динамики, экономики, квантовой электроники и механики. Получены условия существования инвариантных множеств для множества достижимости системы и условия асимптотического приближения решений системы к заданному множеству. Результаты работы проиллюстрированы на примерах развития популяции, подверженной промыслу, когда моменты и размеры промысловых заготовок являются случайными величинами. Для данных моделей исследованы различные динамические режимы развития, которые существенно отличаются от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных экологических системах. Получены условия, при которых размер популяции находится в заданном множестве, и условия асимптотического вырождения популяции с вероятностью единица, также приведены оценки для математического ожидания и дисперсии времени вырождения популяции.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.