Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье исследуются прямая и обратная задачи для уравнений субдиффузии с участием дробной производной в смысле Хильфера. В качестве эллиптической части уравнения взят произвольный положительный самосопряженный оператор $A$. В частности, в качестве оператора $A$ можно взять оператор Лапласа с условием Дирихле. Сначала доказано существование и единственность решения прямой задачи. Затем с помощью представления решения прямой задачи доказывается существование и единственность обратной задачи нахождения правой части уравнения, зависящей только от пространственной переменной.
-
В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.
-
О равномерной сходимости аппроксимаций потенциала двойного слоя вблизи границы двумерной области, с. 26-43На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.
-
В полубесконечном цилиндре рассматривается поведение решений уравнения Лапласа, удовлетворяющих на боковой поверхности Γ цилиндра третьему краевому условию
(∂u/∂v+β(x)u)|Γ=0,
где β(x)≥0. Показано, что любое ограниченное решение на бесконечности стабилизируется к некоторой постоянной, обладая при этом конечным интегралом Дирихле. Получены условия убывания в бесконечности коэффициента β(x) при u в граничном условии, при которых поведение решений близко к поведению решений задачи Дирихле (дихотомия решений, стремление ограниченного решения к 0) либо задачи Неймана (трихотомия решений, стремление ограниченных решений к постоянной, вообще говоря отличной от 0). Основное условие, определяющее близость третьей краевой задачи к задаче Дирихле либо Неймана, получено в терминах соответственно бесконечности или конечности интеграла ∫Γx1β(x)dS, где переменная x1 соответствует направлению оси цилиндра.
-
Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.
-
Бесконечные сети Шрёдингера, с. 640-650Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.
-
О разрешимости краевых задач Дирихле и Неймана для уравнения Пуассона с множественной инволюцией, с. 651-667В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.
-
О разрешимости некоторых краевых задач для нелокального уравнения Пуассона с периодическими условиями, с. 137-154В настоящей работе с помощью отображений типа инволюции вводится нелокальный аналог оператора Лапласа. Для соответствующего нелокального аналога уравнения Пуассона в единичном шаре изучены новые классы краевых задач. В рассматриваемых задачах граничные условия заданы в виде связи значения искомой функции в верхней полусфере со значением в нижней полусфере. Исследуемые задачи обобщают известные периодические и антипериодические краевые задачи для круговых областей. Задачи решаются сведением их к двум вспомогательным задачам с краевыми условиями Дирихле и Неймана для нелокального аналога уравнения Пуассона. Используя известные утверждения для полученных вспомогательных задач, мы доказываем теоремы о существовании и единственности решения основных задач. Найдены точные условия разрешимости исследуемых задач, а также получены интегральные представления решений. Изучены также спектральные вопросы, связанные с периодическими задачами. Найдены собственные функции и собственные значения этих задач. Доказаны теоремы о полноте системы собственных функций в пространстве $L_2$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.