Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'уравнение теплопроводности':
Найдено статей: 14
  1. Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.

  2. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

  3. Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.

  4. Математическое моделирование композиционных материалов играет важную роль в современной технике, а решение и исследование обратных граничных задач теплообмена невозможно без использования систем собственных функций задачи Штурма-Лиувилля для дифференциального уравнения с разрывными коэффициентами. Одним из важнейших свойств таких систем является их полнота в соответствующих пространствах. Это свойство систем позволяет доказать теоремы существования и единственности как для прямых задач, так и обратных граничных задач теплопроводности, а также обосновать численные методы решения таких задач. В настоящей статье доказана полнота в пространстве $L_2[r_0,r_2]$ задачи Штурма-Лиувилля для дифференциального оператора второго порядка с разрывным коэффициентом. Эта задача возникает при исследовании и решении обратной граничной задачи теплопроводности для полого шара, состоящего из двух шаров с различными коэффициентами температуропроводности. Доказана самосопряженность, инъективность, а также положительная определенность этого оператора.

  5. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

  6. В работе рассматривается сингулярное интегральное уравнение типа Вольтерра второго рода, к которому методом тепловых потенциалов редуцируются некоторые граничные задачи теплопроводности в областях с границей, изменяющейся со временем. Особенность такого рода задач заключается в том, что область вырождается в точку в начальный момент времени. Соответственно, отличительной особенностью исследуемого интегрального уравнения является то, что интеграл от ядра, при стремлении верхнего предела интегрирования к нижнему не равен нулю. Данное обстоятельство не позволяет решить данное уравнение методом последовательных приближений. Построено общее решение соответствующего характеристического уравнения и методом равносильной регуляризации Карлемана–Векуа найдено решение полного интегрального уравнения. Показано, что соответствующее однородное интегральное уравнение имеет ненулевое решение.

  7. В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.

  8. В статье выполнен теоретический анализ основополагающих уравнений, выражающих фундаментальные законы сохранения в континуальном и дисконтинуальных приближениях, и методов решения задач гидродинамики как одного из важнейших подразделов механики сплошных сред. Данная работа является попыткой более точно описать физико-химические макропроцессы. Показано, что для компьютерного моделирования больше всего подходят уравнения, которые выражают законы сохранения при естественных ограничениях на минимальные пространственный и временной масштабы, то есть уравнения без частных производных и ограничений на гладкость решений. На примере уравнений неразрывности и теплопроводности, приведен феноменологический способ построения и численного решения основополагающих уравнений, и сравнение с традиционным подходом.

  9. Численно исследуются газодинамические процессы, протекающие в начальный момент работы сверхзвукового сопла с высокой степенью геометрического расширения. Основное внимание уделяется изучению механизмов потери течением осевой симметрии за счет неустойчивости образующихся в сверхзвуковой части сопла зон отрывного течения. Модель нестационарного течения вязкого теплопроводного сжимаемого газа по соплу основана на системе уравнений сохранения в форме Навье-Стокса. Турбулентность исследуемого течения моделируется методом отсоединенных вихрей DES и его модификацией DDES с привлечением полуэмпирической модели Спаларта-Аллмараса. Выполнено сравнение распределения давления на стенке сопла, проекции годографа вектора тяги, мгновенных и осредненных картин течения с экспериментальными данными и численными результатами других авторов. Показано, что применение вихреразрешающего моделирования DES и DDES позволяет адекватно описать основные особенности течения и воспроизвести феномен возникновения боковой составляющей тяги сверхзвукового сопла при приемлемом уровне вычислительных затрат.

  10. В работе построен алгоритм повышенного порядка точности на основе WENO схем для моделирования динамики многокомпонентного реагирующего газа с учетом процессов диффузии, теплопроводности и химических реакций. Проведены расчеты для течения газа в проточном реакторе для термического пиролиза этана с внешним обогревом реакционной зоны. В рассматриваемых течениях скорость движения газа много меньше скорости распространения звука в газовой смеси, что обуславливает использование уравнений Навье-Стокса в приближении малых чисел Маха для описания исследуемых процессов. Расчет уравнений химических реакций выделяется в отдельный шаг, где скорость реакции определяется на основе выражений Аррениуса. Для построения модели химической кинетики принята кинетическая схема пиролиза этана, представляющая собой разветвленный радикальный механизм. Проведены расчеты дозвукового течения газа с учетом процессов диффузии, химических реакций и их тепловых эффектов для различных температур нагревательных элементов. Сравнение с экспериментальными данными показало, что $1.97\,\%$-ная конверсия этана в расчетах достигается для $648\,^{\circ}$C на выходе металлического реактора, что близко к экспериментальным значениям, составляющим $2.1\,\%$. Сравнение данных экспериментов по термическому пиролизу этана с данными, полученными в ходе вычислительного эксперимента, показало высокую степень достоверности полученных результатов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref