Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
-
Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.
-
Приведены результаты исследования структуры быстрозатвердевших сплавов системы Sn-Bi, полученных при скорости охлаждения расплава $10^{5}$ К/с с составами Sn-X мас. % Bi (X = 13, 20, 30, 43). Исследования микроструктуры проводились с помощью растровой электронной микроскопии, зеренная структура анализировалась методом дифракции отраженных электронов. Установлено, что кристаллизация всех исследуемых сплавов протекает по химически безразделительному механизму с образованием пересыщенного твердого раствора висмута в решетке олова с составом соответствующим исходному. Наблюдения за распадом твердого раствора при комнатной температуре показывают, что для сплавов концентрация висмута в которых не превышает предельной растворимости висмута в олове (20 мас. %) распад протекает по смешанному механизму непрерывного и прерывистого распадов. В результате непрерывного распада в объеме зерна олова образуются игольчатые когерентные включения висмута. Скорость прерывистого распада увеличивается с повышением концентрации висмута в расплаве. В доэвтектических сплавах с концентрацией висмута выше предельной растворимости распад протекает по прерывистому механизму. Полный распад происходит в несколько стадий, в результате чего в фольгах формируются участки с микроструктурой различной степени дисперсности.
-
В работе представлена постановка задачи случайной упаковки твёрдых частиц в пространстве в виде минимизации целевой функции, являющейся мерой пересечений подобластей (представляющих частицы и запрещённые области) в R3; при этом желаемые особенности упаковки учитываются дополнительным слагаемым в целевой функции. Предложен новый алгоритм упаковки на основе метода случайного поиска, в котором оценка новой конфигурации частиц производится после каждого перемещения, а сами частицы увеличивают свой размер от начального до заданного по мере устранения пересечений между ними. Данный алгоритм сопоставлен с алгоритмом вязкой суспензии для случая упаковки равновеликих сфер в периодическом кубе; при плотности упаковки φ < 0,55 алгоритм случайного поиска формирует упаковки с меньшим количеством и размером кластеров частиц, в более плотных упаковках различия незначительны. Также показан пример формирования упаковки с особенностью в виде смещения частиц вплотную к твёрдой границе.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.