Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'формула краевых форм':
Найдено статей: 5
  1. Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.

  2. Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.

  3. Предлагается описание сопряженного оператора к оператору, соответствующему линейной многоточечной краевой задаче для квазидифференциального уравнения, обладающее свойствами: исходный и сопряженный к нему оператор действуют из одного и того же рефлексивного банахова пространства в сопряженное банахово пространство; сопряженный оператор также соответствует некоторой линейной многоточечной краевой задаче для квазидифференциального уравнения.

  4. Рассматриваются процессы образования периодических структур при ионной бомбардировке. В качестве математической модели выбрано двумерное обобщение уравнения Курамото–Сивашинского. Аналогичное уравнение было получено и в работе Бредли–Харпера. С математической точки зрения изрезанный рельеф в результате ионной бомбардировки может быть объясним как локальные бифуркации плоского профиля при смене устойчивости.

    Для описания такого рельефа получены асимптотические формулы. Для исследования нелинейной краевой задачи использован метод теории бифуркаций для задач с бесконечномерным фазовым пространством. В частности, использован метод построения нормальных форм, ведущий свое начало от алгоритма Крылова–Боголюбова.

  5. Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
    Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
    Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref