Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'функционально-интегральное уравнение':
Найдено статей: 8
  1. В статье изучается существование положительных решений на отрезке $[0,1]$ двухточечной краевой задачи для одного нелинейного функционально-дифференциального уравнения третьего порядка с интегральным граничным условием на одном из концов отрезка. С помощью теоремы Го–Красносельского о неподвижной точке, с использованием некоторых свойств функции Грина соответствующего дифференциального оператора, получены достаточные условия существования по меньшей мере одного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий полученные результаты.

  2. Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.

  3. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

  4. Для конфликтно-управляемой динамической системы, описываемой функционально-дифференциальным уравнением нейтрального типа в форме Дж. Хейла, рассматривается дифференциальная игра с показателем качества, который оценивает историю движения, реализующуюся к терминальному моменту времени, а также включает интегральную оценку реализаций управлений игроков. Игра формализуется в классе чистых позиционных стратегий. На основе понятия коинвариантных производных для функционала цены этой игры выписывается функциональное уравнение Гамильтона-Якоби. Доказывается, во-первых, что решение этого уравнения, удовлетворяющее определенным условиям гладкости, является ценой исходной дифференциальной игры, а во-вторых, что цена в точках дифференцируемости удовлетворяет выписанному уравнению Гамильтона-Якоби. Таким образом, это уравнение можно трактовать как уравнение Гамильтона-Якоби-Айзекса-Беллмана для систем нейтрального типа.

  5. Рассматривается нелинейное эволюционное операторное уравнение второго рода $\varphi=\mathcal{F}\bigl[f[u]\varphi\bigr]$, $\varphi\in W[0;T]\subset L_q\bigl([0;T];X\bigr)$, в произвольном банаховом пространстве $X$, с эволюционными (вольтерровыми) операторами $\mathcal{F}\colon L_p\bigl([0;\tau];Y\bigr)\to W[0;T]$, $f[u]\colon W[0;T]\to L_p\bigl([0;T];Y\bigr)$ общего вида, $Y$ - произвольное банахово пространство, $u\in\mathcal{D}$ - управляющий параметр. Для указанного уравнения доказываются теорема единственности решения, а также теорема о достаточных условиях тотально (по множеству допустимых управлений) глобальной разрешимости при варьировании управления. При некоторых естественных предположениях, связанных с поточечными по времени $t$ оценками, заключение об однозначной тотально глобальной разрешимости делается, исходя из факта глобальной разрешимости системы сравнения, в качестве которой выступает система функционально-интегральных неравенств (можно заменить ее системой уравнений аналогичного типа, а в некоторых случаях - системой обыкновенных дифференциальных уравнений) относительно функций одного переменного $t\in[0;T]$ со значениями в пространстве $\mathbb{R}$. В качестве примера устанавливаются условия однозначной тотально глобальной разрешимости управляемой нелинейной нестационарной системы уравнений Навье-Стокса.

  6. Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.

  7. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$, $F[\cdot;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Для операторного уравнения $x=F[x;u]$, $x\in W$, вводится система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Устанавливается, что при естественных предположениях относительно оператора $F$ для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения. Сам по себе этот факт аналогичен некоторым результатам, установленным автором ранее. Центральный результат статьи составляет ряд признаков устойчивой глобальной разрешимости функционально-интегральных уравнений, упомянутых выше, без предположения типа локальной липшицевости правой части. В качестве содержательного примера, представляющего самостоятельный интерес, рассматривается нелинейная нестационарная система Навье–Стокса в пространстве $\mathbb{R}^3$.

  8. Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref