Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'функция Бесселя':
Найдено статей: 6
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

  2. Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.

  3. В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.

  4. Иманбетова А.Б., Сарсенби А.А., Сейлбеков Б.Н.
    Обратные задачи для уравнения колебания балки с инволюцией, с. 452-466

    В этой статье рассматриваются обратные задачи для уравнения гиперболического вида четвертого порядка с инволюцией. Существование и единственность решения изучаемых обратных задач устанавливается методом разделения переменных. Для применения метода разделения переменных доказываем базисность Рисса собственных функций дифференциального оператора четвертого порядка с инволюцией в пространстве ${{L}_{2}}(-1,1)$. При доказательстве теорем о существовании и единственности решения широко используем неравенство Бесселя для коэффициентов разложений в ряд Фурье в пространстве ${{L}_{2}}(-1,1)$. Показана существенная зависимость существования решения от коэффициента уравнения $\alpha$. В каждом из случаев $\alpha <-1$, $\alpha >1$, $-1<\alpha <1$ выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для уравнения четвертого порядка с инволюцией.

  5. В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

  6. В статье рассмотрено параболо-гиперболическое уравнение с сингулярным коэффициентом и спектральным параметром в области, состоящей из характеристического треугольника и полуполосы. Сформулирована задача с нелокальным условием, связывающим значения искомой функции в точках двух граничных характеристик и линии изменения типа уравнения с помощью двух операторов, один из которых зависит от коэффициента сингулярности, а другой — от спектрального параметра. Поставленная задача исследована сведением ее к системе уравнений относительно следа искомой функции и еe производной по $x$ на линии изменения типа уравнения. Единственность решения доказана с использованием метода интегралов энергии, при этом использованы интегральные представления гамма-функции Эйлера и функции Бесселя первого рода. Существование решения задачи доказано методом интегральных уравнений, при этом поставленная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода, разрешимость которого следует из единственности решения задачи. Выявлены достаточные условия, которые обеспечивают однозначную разрешимость поставленной задачи.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref