Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'хаотическая динамика':
Найдено статей: 6
  1. В работе изучается хаотическая динамика неголономной модели кельтского камня. Показано, что при определенных значениях параметров, характеризующих геометрические и физические свойства камня, в модели наблюдается странный аттрактор лоренцевского типа, для которого также исследованы этапы его возникновения и разрушения.

  2. Башкирцева И.А., Насырова В.М., Ряшко Л.Б., Цветков И.Н.
    Индуцированная шумом перемежаемость и переход к хаосу в нейронной модели Рулькова, с. 453-462

    В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.

  3. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

  4. Рассматривается вероятностная модель, заданная разностным уравнением $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad(1)$$ где $\Omega$ - заданное множество с сигма-алгеброй подмножеств $\widetilde{\mathfrak A},$ на которой определена вероятностная мера $\widetilde \mu;$ $\mu$ - продолжение меры $\widetilde \mu$ на сигма-алгебру, порожденную цилиндрическими множествами. Исследуются инвариантные множества и аттракторы уравнения со случайными параметрами $(1).$ Получены условия, при которых заданное множество является максимальным аттрактором. Показано, что внутри инвариантного множества $A\subseteq [a,b]$ могут существовать решения, хаотические с вероятностью единица. Это происходит в случае, когда существуют $m_i\in\mathbb N$ и множества $\Omega_i\subset\Omega$ такие, что $\mu(\Omega_i)>0,$ $i=1,2,$ и ${\rm cl} \,f^{m_1}(\Omega_1,A)\cap \,{\rm cl} f^{m_2}(\Omega_2,A)=\varnothing.$ Решения, хаотические с вероятностью единица, также наблюдаются в случае, когда уравнение $(1)$ либо не имеет ни одного цикла, либо все циклы отталкивающие с вероятностью единица. Результаты работы проиллюстрированы на примере непрерывно-дискретной вероятностной модели динамики изолированной популяции; для данной модели исследованы различные динамические режимы развития, которые имеют определенные отличия от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных физических системах.

  5. В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.

  6. В статье рассматривается возникновение хаотического аттрактора в неунимодальном одномерном отображении, моделирующем динамику популяции. Появление не являющегося переходным хаотического режима происходит без каскада бифуркации. Изменение в поведении модели возникает после обратной касательной бифуркации. C биологической точки зрения эффект интерпретируется резким включением дополнительных факторов смертности для поколения на определенном этапе. Разработанная модель описывает волнообразную зависимость запаса и пополнения при воспроизводстве отдельных видов рыб, наблюдавшуюся в естественной среде.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref