Текущий выпуск Выпуск 4, 2017 Том 27

Инвариантная мера в задаче о качении диска по плоскости

 pdf (313K)

В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.

Ключевые слова: неголономная механика, теорема Шварцшильда-Литтлвуда, многообразие падений, хаотическая динамика
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 4, с. 576-582
DOI: 10.20537/vm170407

Invariant measure in the problem of a disk rolling on a plane

This paper addresses the dynamics of a disk rolling on an absolutely rough plane. It is proved that the equations of motion have an invariant measure with continuous density only in two cases: a dynamically symmetric disk and a disk with a special mass distribution. In the former case, the equations of motion possess two additional integrals and are integrable by quadratures by the Euler-Jacobi theorem. In the latter case, the absence of additional integrals is shown using a Poincaré map. In both cases, the volume of any domain in phase space (calculated with the help of the density) is preserved by the phase flow. Nonholonomic mechanics is populated with systems both with and without an invariant measure.

Keywords: nonholonomic mechanics, Schwarzschild-Littlewood theorem, manifold of falls, chaotic dynamics
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 4, pp. 576-582

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref