Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.
-
Рассматриваются многозначные отображения, действующие из частично упорядоченного пространства $(X,\leq)$ в множество $Y$, на котором задано рефлексивное бинарное отношение $\vartheta$ (это отношение не предполагается ни антисимметричным, ни транзитивным, т.е. $\vartheta$ не является порядком в $Y$). Для таких отображений введены аналоги понятий накрывания и монотонности. С использованием этих понятий исследуется включение $F(x)\ni \tilde{y}$, где $F\colon X \rightrightarrows Y$, $\tilde{y}\in Y$. Предполагается, что для некоторого заданного $x_0\in X$ существует $y_{0} \in F(x_{0})$ такой, что $(\tilde{y},y_{0}) \in \vartheta$. Получены условия существования решения $x\in X$ изучаемого включения, удовлетворяющего неравенству ${x\leq x_0}$, и условия существования минимального и наименьшего решений. Также определяется и исследуется свойство устойчивости решений рассматриваемого включения к изменениям многозначного отображения $F$ и элемента $\widetilde{y}$. А именно, рассматривается последовательность «возмущенных» включений $F_i(x)\ni \tilde{y}_i$, $i\in \mathbb{N}$, получены условия, при которых эти включения имеют решения $x_i \in X$ и для любой возрастающей последовательности $\{i_n\}$ натуральных чисел выполнено $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x$, где $x\in X$ — решение исходного включения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.