Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.
краевые задачи, априорная оценка, нагруженные уравнения, разностная схема, псевдопараболическое уравнение, уравнение влагопереноса, уравнение Аллера, дробная производная КапутоThe paper is devoted to the construction of approximate solutions of boundary value problems in a rectangle for a loaded modified fractional-order moisture transfer equation with the Bessel operator, which act as mathematical models of the movement of moisture and salts in soils with fractal organization. Difference schemes for differential problems are constructed. The method of energy inequalities is used to derive a priori estimates of solutions to the problems under consideration in differential and difference interpretations. The obtained a priori estimates are followed by uniqueness, stability of the solution from the initial data and the right part, as well as convergence of the solution of the difference problem to the solution of the corresponding differential problem with a speed equal to the order of approximation error. An algorithm for the numerical solution of difference schemes obtained by approximating boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator is constructed.
-
Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.
псевдопарабролическое уравнение, уравнение Аллера, локально-одномерная схема, устойчивость, сходимость разностной схемы, метод суммарной аппроксимацииWe study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.