Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Riemannian manifold':
Найдено статей: 3
  1. Кривоносов Л.Н., Лукьянов В.А.
    Конформная связность со скалярной кривизной, с. 22-35

    Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.

    Krivonosov L.N., Luk'yanov V.A.
    Conformal connection with scalar curvature, pp. 22-35

    A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.

  2. В данной работе доказано, что функция Лиувилля, ассоциированная с полулинейным уравнением $ \Delta u -g (x, u) = 0 $, тождественна нулю тогда и только тогда, когда существует только тривиальное ограниченное решение полулинейного уравнения на некомпактных римановых многообразиях. Этот результат обобщает соответствующий результат С.А. Королькова в случае стационарного уравнения Шрёдингера $ \Delta u-q (x) u = 0 $. Так же введено понятие емкости компакта, ассоцированого со стационарным уравнением Шрёдингера, и доказано, что если емкость любого компакта равна нулю, то функция Лиувилля есть тождественный ноль.

    It is proved that the Liouville function associated with the semilinear equation $\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.

  3. Пусть M - гладкое многообразие с римановой метрикой g. Вопрос о группе изометрий риманова многообразия (M,g) является основной классической задачей римановой геометрии. Обозначим через G группу всех изометрий риманова многообразия (M,g) размерности n с римановой метрикой g. Структура группы G зависит от фиксированной римановой метрики g. Известно, что для «плохих» римановых метрик группа G может быть очень бедной. Известны примеры, когда группа G состоит из одного элемента. В общем случае известно, что группа G с компактно-открытой топологий является группой Ли. 

    В данной статье обсуждается вопрос о существовании изометрических отображений слоеного многообразия (M,F). Обозначим через GF группу всех изометрий слоеного риманова многообразия (M,F). Структура группы GF зависит не только от римановой метрики g, но и от данной слоеной структуры. Изучение структуры группы GF слоеного многообразия (M,F) является новой и интересной задачей. Впервые эта задача рассмотрена в работе А.Я. Нарманова и автора, где было показано, что группа GF с компактно-открытой топологией является топологической группой. В работе доказывается, что группа изометрий слоеного евклидова пространства является подгруппой группы изометрий евклидова пространства (то есть GFG), если слоение порождено поверхностями уровня гладкой функции, которая не является метрической.

    The question of the group of isometries of a Riemannian manifold is the main problem of the classical Riemannian geometry. Let G denote the group of isometries of a Riemannian manifold M of dimension n with a Riemannian metric g. It is known that the group G with the compact-open topology is a Lie group. This paper discusses the question of the existence of isometric maps of the foliated manifold (M,F). We denote the group of all isometries of the foliated Riemannian manifold (M,F) by GF. Studying the structure of the group Gof the foliated manifold (M,F) is a new and interesting problem. First, this problem is considered in the paper of A.Y. Narmanov and the author, where it was shown that the group Gwith a compact-open topology is a topological group. We consider the question of the structure of the group GF, where M=Rn and F is foliation generated by the connected components of the level surfaces of the smooth function f:RnR. It is proved that the group of isometries of foliated Euclidean space is a subgroup of the isometry group of Euclidean space, if the foliation is generated by the level surfaces of a smooth function, which is not a metric.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref