Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'cascade of bifurcations':
Найдено статей: 3
  1. Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.

    We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.

  2. В работе исследован процесс хаотизации фазового портрета в ограниченной задаче о вращении тяжелого твердого тела с закрепленной точкой. Указаны два дополняющих друг друга механизма хаотизации - рост гомоклинической структуры и развитие каскадов бифуркаций удвоения периода. Отмечено адиабатическое поведение системы на нулевом уровне интеграла площадей при стремлении энергии к нулю. Найдены меандровые торы, связанные с нарушением свойства закручивания рассматриваемого отображения.

    The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and  2) development of cascades of period doubling bifurcations.  On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.

  3. В статье рассматривается возникновение хаотического аттрактора в неунимодальном одномерном отображении, моделирующем динамику популяции. Появление не являющегося переходным хаотического режима происходит без каскада бифуркации. Изменение в поведении модели возникает после обратной касательной бифуркации. C биологической точки зрения эффект интерпретируется резким включением дополнительных факторов смертности для поколения на определенном этапе. Разработанная модель описывает волнообразную зависимость запаса и пополнения при воспроизводстве отдельных видов рыб, наблюдавшуюся в естественной среде.

    Article considers arising of chaotic attractor for notunimodal one-dimensional map, which is a model of pupulation dynamics. Chaotic mode, which is not transient behavior spring up without cascade of bifurcation. Change in behaviour of the map appears as a consequence of backward tangent bifurcation. In the biological view effect is interpreted by sudden inclusion of mortality rate for generation on appointed stage. The new model describes the wave-like dependency of the stock and recruitment existed for real fish population.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref