Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε2+ω4 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.
центральная ось инерции, инерционные пары сил, сухое трение, парадокс, квадратичное сопротивление, запаздывающее ускорение, фрикционно-аэродинамический ударThe article studies the rotational dynamics of a rigid body (rotator) around the central but non-principal axis Oz passing through its center of mass under the action of dry frictional torque Mfr=α√ε2+ω4 caused by inertia forces in the axis's supports and the drag momentum MR=-c|ω|ω quadratic in angular speed ω. It has been shown that the dynamical equations and the equations of the kinetics of the body's rotation, which follow from the dynamical equations, are qualitatively different in general and particular cases of the inertial and dissipative parameters involved: the axial moment of inertia Jzz and the coefficients c and α=Mfr/√ε2+ω4 (where ε is the angular acceleration). It is found that in the particular case of the equality Jzz=c=α a physical feasible solution for the inertial rotation within the dynamics of a perfectly rigid body is absent. The paradox is resolved by the introduction of the lagged angular velocity ω(t-τ) and acceleration ε(t-τ) as factors defining due to D'Alembert principle the supports' transversal reactions Mx,y(t-τ) and hence the value of Mfr(t-τ). The last one determines the loss rate of kinetic momentum, i.e. the dKz(t)/dt at time t. The rotational kinetics had a type of frictional-aerodynamic impact. Also, by numerical integration, there was shown the unusual angular kinetics φ(t) of the damping oscillations of the rotator under the action of the elastic torque Me=-κφ. The kinetics was characterized by the presence of two phases: the short starting part strongly depending on initial conditions followed by the phase of almost sine wave oscillations with extremely slow damping.
-
В работе рассматривается динамика кельтского камня, моделируемая тяжелым уравновешенным эллипсоидом вращения, катящимся без проскальзывания по неподвижной горизонтальной плоскости. При этом центральный эллипсоид инерции тоже представляет собой эллипсоид вращения. При наличии углового смещения между двумя эллипсоидами (характеризующим динамическую несимметрию тела) наблюдаются новые динамические эффекты, которые родственны реверсу в движении кельтских камней. Однако, в отличии от традиционной модели кельтского камня, представляющего собой усеченный двухосный параболоид, в рассматриваемой постановке возможны движения, являющиеся суперпозицией реверса (смена на противоположное направление вращения) и переворота (смена на противоположные оси вращения). При этом указанные реверс и переворот, при надлежащих энергиях и распределениях масс, могут повторяться неоднократно. Возможны также движения, представляющие собой только многократный переворот или реверс.
The paper considers the dynamics of a rattleback as a model of a heavy balanced ellipsoid of revolution rolling without slippage on a fixed horizontal plane. Central ellipsoid of inertia is an ellipsoid of revolution as well. In presence of the angular displacement between two ellipsoids, there occur dynamical effects somewhat similar to the reverse fenomena in the rattleback dynamics. However, unlike a customary rattleback model (a truncated biaxial paraboloid) our system allows the motions which are superposition of the reverse motion (reverse of the direction of spinning) and the turn over (change of the axis of rotation). With appropriate values of energies and mass distribution, this effect (reverse + turn over) can occur more than once. Such motions as repeated reverse or repeated turn over are also possible.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.