Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances, pp. 12-22The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.
-
Структурная устойчивость логарифмических спиралей в задачах управления с особой экстремалью второго порядка, с. 117-128Исследуется структурная устойчивость логарифмических спиралей в обобщении задачи Фуллера на случай управления из круга. Рассматривается малое возмущение относительно действия группы симметрий невозмущенной задачи. Для возмущенной задачи показано, что в окрестности особой экстремали второго порядка сохраняются экстремали в виде логарифмических спиралей. Построенные экстремали приходят на особую экстремаль за конечное время, при этом управления совершают бесконечное число оборотов вдоль окружности.
двумерное управление из круга, особая экстремаль, раздутие особенности, логарифмическая спираль, гамильтонова система, принцип максимума Понтрягина
Structural stability of logarithmic spirals in control problems with second-order singular extremal, pp. 117-128A nonlinear perturbation of generalization of the Fuller problem with controls in a disk is considered. The structural stability of logarithmic spirals is studied. It was shown that if perturbations are small with respect to the action of the symmetry group of the unperturbed problem, then in the neighborhood of a singular second-order solution, extremals in the form of logarithmic spirals are preserved. The constructed extremals arrive at a singular extremal in a finite time, while the controls make an infinite number of revolutions along the circle.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.