Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'classification of singularities':
Найдено статей: 3
  1. Рассматривается задача классификации ростков функций $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$, эквивариантно простых относительно различных представлений конечной циклической группы $\mathbb{Z}_m$, $m\geqslant 3$, на пространствах $\mathbb{C}^n$ и $\mathbb{C}$, с точностью до эквивариантных автоморфизмов $\mathbb{C}^n$. В случае согласованных скалярных действий группы доказано, что при $n\geqslant 2$ эквивариантно простых ростков не существует. Этот результат обобщается на случаи, когда действие группы по нескольким переменным в $\mathbb{C}^n$ совпадает с действием группы в $\mathbb{C}$. Кроме того, доказано, что в случае несогласованных скалярных действий группы $\mathbb{Z}_3$ на $\mathbb{C}^2$ и $\mathbb{C}$ всякий эквивариантно простой росток эквивалентен одному из ростков $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.

    We consider the problem of classification of function germs $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$ that are equivariant simple with respect to various representations of a finite cyclic group $\mathbb{Z}_m$, $m\geqslant 3$, on $\mathbb{C}^n$ and $\mathbb{C}$ up to equivariant automorphisms of $\mathbb{C}^n$. In the case of matching scalar actions of the group it is shown that for $n\geqslant 2$ there exist no equivariant simple function germs. This result is generalized to the cases where the group action in several variables in $\mathbb{C}^n$ coincides with the action of the group on $\mathbb{C}.$ In addition, it is shown that in the case of non-matching scalar actions of $\mathbb{Z}_3$ on $\mathbb{C}^2$ and on $\mathbb{C}$ any equivariant simple function germ is equivalent to one of the germs $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.

  2. В задаче о движении волчка Ковалевской в двойном поле (случай интегрируемости А.Г. Реймана-М.А. Семенова-Тян-Шанского) вычислен тип всех критических точек отображения момента.

    In the problem of motion of the Kowalevski top on two constant fields (the A.G. Reyman-M.A. Semenov-Tian-Shansky case) the type of all critical points of the momentum map is calculated.

  3. В статье приводится аналитическая классификация особенностей ранга 0 и 1 отображения момента для интегрируемого случая Ковалевской-Яхья в динамике твердого тела.

    In the paper we give analytic classification of singularities of the momentum map for integrable Kowalevski–Yehia case in rigid body dynamics.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref