Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'curvilinear integral':
Найдено статей: 1
  1. Рассмотрены новые свойства криволинейного интеграла Римана-Стилтьеса. Доказано, что криволинейный интеграл Римана-Стилтьеса не зависит от пути интегрирования, если интегрируемая и интегрирующая функции зависят только от одной переменной. Найдено новое необходимое условие функциональной зависимости функций двух переменных. Предлагается новый подход к определению двойного интеграла Римана-Стилтьеса, который содержит не одну, а две интегрирующие функции. Рассмотрены общие свойства двойного интеграла Римана-Стилтьеса. Приведены способы вычисления двойного интеграла для случая гладких или кусочно-гладких интегрирующих функций. Получена одна формула для преобразования двойного интеграла Римана-Стилтьеса в повторный интеграл.

    Fedorov D.L.
    On the Riemann-Stieltjes double integral, pp. 366-378

    The article deals with the new properties of the Riemann-Stieltjes curvilinear integral. It is proved that the Riemann-Stieltjes curvilinear integral is independent of path of integration if an integrable and an integrating functions depend only on one variable. A new necessary condition of the functional dependence of functions of two variables is found. The author proposes a new approach to the definition of the Riemann-Stieltjes double integral, which contains not one but two integrating functions. General properties of the Riemann-Stieltjes double integral are discussed. Methods for calculating the double integral for the case of smooth or piecewise-smooth integrating functions are presented. A formula for the conversion of the Riemann-Stieltjes double integral into an iterated integral is obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref