Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'directional derivative set':
Найдено статей: 2
  1. В данной работе изучаются производные множества по направлениям и дифференциалы заданного многозначного отображения. Указаны различные соотношения между производными множествами по направлениям и дифференциалами многозначного отображения. Установлено, что каждое компактное подмножество множества нижних производных может быть использовано для нижней аппроксимации заданного многозначного отображения. Вычисляются и сравниваются верхние и нижние контингентные конусы некоторых множеств на плоскости.

    In this paper directional derivative sets and differentials of a given set valued map are studied. Different type relations between directional derivative sets and differentials of a set valued map are specified. It is established that every compact subset of lower derivative set can be used for lower approximation of given set valued map. Upper and lower contingent cones of some plane sets are calculated and compared.

  2. Исследована задача о минимизации хаусдорфова расстояния между двумя выпуклыми многоугольниками. Считается, что один из них может совершать произвольные движения на плоскости, включая параллельный перенос и вращение с центром в любой точке. Другой многоугольник считается при этом неподвижным. Разработаны и программно реализованы итерационные алгоритмы поэтапного сдвига и вращения многоугольника, обеспечивающие уменьшение хаусдорфова расстояния между ним и неподвижным многоугольником. Доказаны теоремы о корректности алгоритмов для широкого класса случаев. При этом по существу используются геометрические свойства чебышёвского центра компактного множества и дифференциальные свойства функции евклидова расстояния до выпуклого множества. При реализации программного комплекса предусмотрена возможность многократного запуска с целью выявления наилучшего из найденных положений многоугольника. Проведено моделирование ряда примеров.

    The problem of minimizing the Hausdorff distance between two convex polygons is studied. The first polygon is supposed to be able to make any flat motions including parallel transportation and rotation with the center at any point. The second polygon is supposed to be fixed. Iterative algorithms of step-by-step displacements and rotations of the polygon which provide a decrease in the Hausdorff distance between the moving polygon and the fixed polygon are developed and realized in software programs. Some theorems of correctness of the algorithms are proved for a wide range of cases. Geometrical properties of the Chebyshev center of a compact set and differential properties of the function of Euclidean distance to a convex set are used. The possibility of a multiple launch is provided for in the implementation of the software complex for the purpose of identifying the best found position of the polygon. Modeling for several examples is performed.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref