Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'discrete Schrödinger operator':
Найдено статей: 6
  1. Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.

    We consider a discrete Schrödinger operator on the graph, which is the Hamiltonian in the tight-binding approach of an electron in the system consisting of a quantum wire, and two embedded quantum dots. This operator describes the double-barrier resonant nanostructure, in which one of the barriers is a non-local potential. The essential and absolutely continuous spectra of this operator are described. We study the scattering problem in the stationary approach for two possible directions of particles propagation. The conditions of total reflection and total transmission are found.

  2. Для дискретного оператора Шредингера, отвечающего квантовому волноводу, с экспоненциально убывающим потенциалом вида εV доказано, что в окрестности особенностей невозмущенной функции Грина для малых ε существуют квазиуровни (собственные значения или резонансы), для которых найдены асимптотические формулы.

    We proved that the discrete Schrödinger operator corresponding to a quantum waveguide with a small exponentially decreasing potential of the form εV has quasi-levels (eigenvalues or resonances). The asymptotic formulas for these quasi-levels are obtained.

  3. Исследуются спектральные свойства дискретного оператора Шредингера для бесконечной полосы с нулевыми граничными условиями. Доказано, что для малых убывающих потенциалов вблизи особенностей невозмущенной функции Грина (граничных точек подзон) возникают собственные значения и резонансы, найдена их асимптотика. Описана картина рассеяния; явление дифракции (рассеяние, главным образом, по конечному числу выделенных направлений) трансформируется в рассматриваемой квазиодномерной системе в волны во времени вероятностей прохождения и отражения. Получены простые формулы для данных вероятностей вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов.

    Tinyukova T.S., Chuburin Y.P.
    The discrete Schrödinger equation for a quantum waveguide, pp. 80-93

    We investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. We prove that the eigenvalues and resonances arise for the small decreasing potentials near singularities of the non-perturbed Green function (boundary points of the subbands) and we find their asymptotic behavior. The scattering picture is described: the diffraction (i.e. the scattering mainly in the finite number of preferential directions) transforms into probability waves in time of the reflection and propagation in the considered quasi-1D system. The simple formulas for these probabilities are obtained near boundary points of the subbands (this corresponds to small velocities of the quantum particles) for the small potentials.

  4. В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.

    The paper considers the discrete Schrödinger operator on a graph with vertices on two intersecting lines, which is perturbed by a decreasing potential. This operator is the Hamiltonian of an electron near a structure formed by a quantum dot and four outgoing quantum wires in the tight-binding approximation widely used in the physics literature for studying such nanostructures. We have proved the existence and uniqueness of the solution of the corresponding Lippmann-Schwinger equation and obtained the asymptotic formula for it. The non-stationary scattering picture has been studied. The scattering problem for the above operator in the case of a small potential, and also in the case of both a small potential and small velocity of a quantum particle, is investigated. Asymptotic formulas for the probabilities of the particle propagation in all possible directions have been obtained.

  5. Натия Н., Амуля Смырна Ч.
    Бесконечные сети Шрёдингера, с. 640-650

    Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.

    Nathiya N., Amulya Smyrna C.
    Infinite Schrödinger networks, pp. 640-650

    Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.

  6. Для дискретного оператора Шредингера на графе с вершинами на пересечении двух прямых, возмущенного убывающим потенциалом вида εV, доказано, что в окрестности нуля для малых ε>0 нет ненулевых квазиуровней.

    We consider the discrete Schrödinger operator perturbed by a decreasing potential of the form εV defined on a graph the nodes of which lie on the union of two intersected straight lines. We prove that non-vanishing quasi-levels do not exist in the neighbourhood of zero for a small ε>0.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref