Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'effect of destabilization':
Найдено статей: 2
  1. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

    The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.

  2. Исследуется нерезонансная эволюция угла наклона оси вращения гипотетической экзо-Земли в гравитационном поле звезды, спутника планеты (экзо-Луны) и внешней планеты (экзо-Юпитера). Считаем, что экзо-Земля является динамически симметричным твердым телом $(A = B)$, эллипсоид инерции которого близок к сфере. Полагаем также, что обе планеты движутся по кеплеровским эллипсам вокруг звезды. Траектория спутника — эволюционирующий эллипс с фокусом в экзо-Земле: эволюционирует долгота восходящего узла орбиты спутника на плоскости «эклиптики» и аргумент перицентра. В предположении, что частоты орбитального эллиптического движения есть величины порядка единицы, получены канонические усредненные уравнения возмущенных колебаний оси вращения экзо-Земли, содержащие параметры, медленно меняющиеся со временем. В предположении, что массы планет малы по сравнению с массой звезды, получены в первом приближении метода малого параметра упрощенные уравнения колебаний оси вращения планеты. Интеграция этих уравнений дает явную зависимость угла наклона оси вращения экзо-Земли от времени. Показано, что гравитационные моменты от внешней планеты формируют вековую, долгопериодическую моду колебаний с частотой, равной частоте невозмущенной прецессии оси собственного вращения экзо-Земли. Влияние экзо-Луны сводится к появлению короткопериодических гармоник с частотой, близкой к частоте прецессии долготы восходящего узла орбиты экзо-Луны. Проведены расчеты для двух экзопланетных систем: для системы, подобной Солнечной, и для планетной системы 7 Canis Majoris. Описан эффект дестабилизации (стабилизации) колебаний по углу нутации оси вращения экзо-Земли под действием гравитационных моментов от экзо-Луны и экзо-Юпитера.

    We investigate the non-resonant evolution of the axial tilt of hypothetical exo-Earth in the gravitational field of a star, planet's satellite (exo-Moon) and outer planet (exo-Jupiter). The exo-Earth is assumed to be rigid, axially symmetric ($A=B$) and almost spherical. We assume the orbits of the both exo-planets to be Keplerian ellipses with focus in the star, the orbit of exo-Moon to be an evolving Keplerian ellipse with slowly changing of ascending node longitude and periapsis argument. Assuming the frequencies of the unperturbed orbital elliptical motion to be of the order of unity, we obtain the canonical averaged equations describing the perturbed oscillations of the exo-Moon spin axis. These equations contain parameters changing slowly over time. Using the smallness of the planets' masses relative to the mass of the star, we have obtained simplified equations of oscillations of the exo-Earth spin axis by the small parameter method. Time integration of simplified equations gives the axial tilt of exo-Moon as a function of time. It is shown that the torques from the exo-Jupiter create a secular, long-period oscillation mode in axial tilt with a frequency equals to frequency of unperturbed spin axis precession of the exo-Earth. The impact of the exo-Moon on the evolution of the exo-Earth spin axis is that short-period harmonics appear in the oscillations of the axial tilt. The frequency of such oscillations is close to the precession frequency of the ascending node longitude of the exo-Moon orbit. We have calculated the evolution of exo-Earth axial tilt for two exo-planetary systems, i.e., for a system similar to the solar system, and for a planetary exo-system 7 Canis Majoris. The effect of destabilization (stabilization) of the exo-Earth tilt oscillations due to the torques exerted by exo-Moon and exo-Jupiter is described.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref