Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'interface':
Найдено статей: 14
  1. Высокос М.И., Жуковский В.И., Кириченко М.М., Самсонов С.П.
    Новый подход к многокритериальным задачам при неопределенности, с. 3-16

    Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа-Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю.Б. Гермейера, а из ПМС - оценка значения функции сожаления в качестве риска по Сэвиджу-Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие - сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.

    Vysokos M.I., Zhukovskii V.I., Kirichenko M.M., Samsonov S.P.
    A new approach to multicriteria problems under uncertainty, pp. 3-16

    The applicability and novelty of this research lies in that the decision-maker in a multicriteria problem aims not only to maximize guaranteed values of each criterion, but also to minimize the guaranteed risks accompanying the said maximization. The topic of the research lies at the interface of the multicriteria problem theory and the Savage-Niehans minimax regret principle: the concept of a weakly effective estimate has been derived from the MP theory, while estimation of risks with values of the Savage-Niehans regret function has been derived from the minimax regret principle. The scope of this research is limited to interval uncertainties: the decision-maker only knows the limits of the interval, and probabilistic characteristics are missing. A new term is introduced, namely, “strongly guaranteed solution under outcomes and risks”; its existence for “regular”-confined-strategies for the mathematical programming is established. As an example of a practical application, the problem of diversification of a multi-currency deposit is suggested and solved.

  2. Для затвердевающего чистого расплава получены граничные условия на межфазной поверхности, рассматриваемой в рамках модели Гиббса. Они включают переменные каждой фазы, взятые на границе раздела, а также величины, характеризующие межфазную поверхность, такие как поверхностная температура и поверхностный тепловой поток. Введение поверхностной температуры, как независимой переменной, позволяет описать рассеяние энергии на межфазной поверхности. Для случая стационарного движения плоского фронта получено выражение для межфазного температурного разрыва. Рассмотрено влияние теплового сопротивления Капицы на скорость фронта. Показано, что учет теплового сопротивления приводит к нелинейному поведению скорости кристаллизации от переохлаждения. Найдены условия стационарного движения фронта.

    Boundary conditions for the solid-liquid interface of the solidifying pure melt have been derived. In the derivation the model of Gibbs interface is used. The boundary conditions include both the state quantities of bulk phases taken at the interface and the quantities characterizing the interfacial surface such as surface temperature and surface heat flux. Introduction of the surface temperature as an independent variable, allows us to describe the scattering energy at the interface. For the steady-state motion of the planar interface the expression for the temperature discontinuity across the phase boundary has been obtained. Effect of Kapitza resistance on interface velocity is considered. It is shown that the thermal resistance leads to non-linearity in solidification kinetics, namely, in “velocity-undercooling” relation. The conditions of the steady-state motion of the planar interface are found.

  3. Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.

    We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.

  4. Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.

    The axisymmetric model based on simplified equations of incompressible viscous fluid is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the uplift of the substrate's block. We numerically solve the nonlinear governing equations and perform the small-amplitude analysis of the behavior of both fluid interfaces. The main result is that a ring pattern does occur on the upper surface provided that the density of the lower layer is greater then that of the upper one. The presented model may be of interest for geophysics to study large-scale ring structures on the Earth and other solid planets.

  5. На основе упрощенных уравнений Навье-Стокса в длинноволновом приближении построена нелинейная модель двухслойного течения вязкой жидкости со свободной границей, создаваемого начальным рельефом границ слоев. Используя метод малого параметра, исследуется эволюция течения на больших временах и определяется зависимость между движением поверхности и границы раздела жидкости. Полученные результаты применяются для расчета профиля границы кора-мантия под крупномасштабной кольцевой структурой на Луне.

    The nonlinear model based on the long-wave approximation of the Navier-Stokes equations is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the initial topography of the surface and interface between layers. Using the method of asymptotic expansions for the governing equations, we study a long-time evolution of the flow and reveal the relation between the surface and interface displacements. The obtained results are applied to calculate the profile of the crust-mantle interface beneath the large-scale lunar basin.

  6. Проведено математическое моделирование конвективно-кондуктивно-радиационного теплообмена в кубической полости, заполненной прозрачной для излучения средой. Анализируемый объект представлял собой замкнутый объем с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Внешние поверхности двух вертикальных стенок являлись изотермическими, а остальные внешние грани области решения - адиабатическими. Краевая задача сформулирована в безразмерных переменных «векторный потенциал-вектор завихренности-температура» в приближении Буссинеска и с учетом диатермичности сплошной среды. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Сформулированная нестационарная краевая задача реализована численно методом конечных разностей в широком диапазоне изменения числа Рэлея, коэффициента теплопроводности материала ограждающих твердых стенок и коэффициента излучения. Получены корреляционные соотношения для средних конвективного и радиационного чисел Нуссельта на характерной внутренней границе раздела сред. Проведено сравнение полученных результатов с данными двумерной модели. Установлено, что при рассмотрении трехмерной задачи можно оценить формирование интенсивных поперечных перетоков среды со стороны двух вертикальных поверхностей, которые отсутствуют в двумерной постановке. Показано, что решение задач конвективно-радиационного теплопереноса в сопряженной постановке приводит к существенным изменениям в распределениях локальных и интегральных характеристик по сравнению с несопряженной моделью, что в первую очередь связано с более корректным описанием механизма теплового излучения в диатермичных средах за счет учета теплопроводности ограждающих твердых стенок.

    Mathematical simulation of convective-conductive-radiative heat transfer in a cubical cavity filled with diathermanous medium has been carried out. The domain of interest is a closed volume having heat-conducting solid walls of finite thickness with diffuse grey inner surfaces. The outer surfaces of two vertical walls are isothermal while the other walls are adiabatic. The boundary-value problem has been formulated in dimensionless variables such as “vector potential-vorticity vector-temperature’’ in the Boussinesq approximation and taking into account the diathermancy of the continuous medium. An analysis of surface thermal radiation has been conducted on the basis of the net-radiation method in the form of Poljak. The formulated transient boundary-value problem has been solved by finite difference method in a wide range of the Rayleigh number, thermal conductivity ratio and surface emissivity. Correlations for the average convective and radiative Nusselt numbers at the characteristic internal solid-fluid interface have been obtained. The comparison between the obtained three-dimensional results and the two-dimensional data has been conducted. It has been found, that on the basis of a three-dimensional model it is possible to analyze the formation of intensive transverse flows from two vertical surfaces which are absent in a two-dimensional model. It has been also shown, that the solution of convective-radiative heat transfer problems in the conjugate statement leads to essential changes in distributions of local and integral parameters in comparison with the non-conjugate model, which first of all is related to a more correct description of the thermal radiation in diathermanous media due to taking into account the thermal conduction of the solid walls.

  7. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

    The axisymmetric model based on the Stokes equations is proposed to investigate the multi-ring pattern formation in two-layer creeping flow with variable thickness of layers. Each layer has uniform density and viscosity. The upper layer is lighter than the lower layer. The flow is generated by both surface and interface geometry. The effect of surface tension is supposed to be negligible. We apply the method of multiple scales to obtain the governing equations describing instability in the form of wave in the flow. Using the Fourier-Laplace method, we analyze the small-amplitude leading behavior of the instability. The asymptotic study reveals that this kind of instability manifests itself as axisymmetric wave which length is comparable with layer thickness; moreover, layer thicknesses play a major role in spatial distribution of wave extrema. The other model parameters alter mostly the wave amplitude. The equation relating extrema distribution to layer thicknesses is derived. We apply the obtained results to study a ring spacing rule observed for most multi-ring basins on the Moon. Using parameters of some lunar multi-ring basins we calculate the consecutive crest radii of the unstable wave and compare the results of simulation with the measured ring radii.

     

  8. Разработана нелинейная модель трехслойного течения со свободной границей на основе упрощенных уравнений вязкой жидкости в длинноволновом приближении. Проведено асимптотическое исследование модели, которое показало существование двух различных режимов эволюции течения на малых и больших временах. Получено уравнение, связывающее смещения границ слоев на больших временах, не зависящее от предыстории течения. Модельные результаты используются для изучения поведения глубинной границы под крупномасштабной кольцевой структурой на Луне в зависимости от изменения геометрических физических параметров модели.

    The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to study the free-surface three-layered creeping flow. An asymptotic study of the governing equations reveals two different modes of evolution at a short and long time. The relation between layers’ boundaries is obtained that is independent of a pre-history of the flow. The obtained results are applied to study a behavior of the deep interface beneath the large-scale lunar basin under the variation of geometrical and physical model’s parameters.

  9. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

    The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.

  10. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

    Lebedev V.G., Sysoeva A.A., Knyazheva I.S., Danilov D.A., Galenko P.K.
    Computer simulation of the rapid solidification for diluted melt Si-As, pp. 123-140

    We consider a locally nonequilibrium process of solidification for a supercooled binary melt. For sake of simplicity, it is assumed, that the solidifying binary system is at constant temperature and pressure. Also there are two phases corresponding to the solid and the liquid states. The mathematical description of the solidification process is based on the phase-field model that generalizes the approach of Plapp (M. Plapp, Phys. Rev. E 84, 031601 (2011)) to the case of locally nonequilibrium processes. We use the method of extended irreversible thermodynamics to derive thermodynamically consistent equations of the model, in contrast to the phenomenological approach of Plapp. A concentration as a dynamic variable (and not the chemical potential of the impurity) is another difference from Plapp's model. The equivalence of describing the process of solidification through the concentration field and through the chemical potential of the system is shown in the framework of the resulting model. In view of the smallness of the relaxation times, the present model is reduced to the singular-perturbed system of partial differential parabolic equations describing the dynamics of concentration and phase fields. In the paper, it is assumed that the description of the thermodynamic equilibrium states on the basis of the experimentally obtained Gibbs potentials is given.

    To verify the model, the numerical simulation of the one-dimensional problem of solidification of the melt was performed in the approximation of the diluted melt Si-As, which had been repeatedly investigated experimentally. In this paper, we propose a gradient-stable explicit method of integrating equations of the second order of accuracy in time in order to solve the system of singularly-perturbed equations numerically. We reduced an infinite space interval to a finite interval by the method of «periodic translation». The estimation of stability was performed using numerical experiments.

    The concentration profile, the phase-field profile and the distribution coefficient of the impurity at the front of solidification depending upon the value of supercooling were obtained from the numerical simulation of the solidification process for diluted melt Si-As. An analytical expression for the distribution coefficient as a function of supercooling that follows from the locally nonequilibrium model with a sharp interface was used to test the adequacy of the results of numerical experiments. The effect of the model parameters on the solidification process and behavior of the numerical solutions near the diffuse boundary were investigated.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref