Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'flexible body':
Найдено статей: 1
  1. Приводится вывод уравнений динамики упругих тел, подверженных большому движению в составе многокомпонентной механической системы и малым деформациям. При выводе используется метод конечных элементов (МКЭ) и метод Крейга–Бэмптона для редукции матриц МКЭ-модели тела. Никаких дополнительных приближений не вводится, тем самым получаются наиболее общие уравнения в рассматриваемой постановке. Проводится анализ трудностей, возникающих на практике при использовании выведенных общих уравнений движения, предлагаются пути их преодоления. Представляется вывод модифицированных уравнений с использованием приближения, более общего по сравнению с общепринятым в литературе. Приводится пример программной реализации выведенных уравнений движения упругих конструкций.

    In the article dynamic equations of motion of flexible bodies’ large displacement within a multibody system with small deformations are given. In the process of derivation finite element method (FEM) and the Craig–Bampton method of FEM model’s matrices reduction are used. No additional approximations are involved, thus obtaining the most general equations in given problem definition. Analysis of difficulties arising in practical using of the derived general dynamic equations is conducted, and ways to overcome those are suggested. Modified equations derivation using more general approximation than is assumed in literature is presented. An example of derived flexible structures’ dynamic equations software realization is given.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref