Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'formal asymptotic expansion':
Найдено статей: 2
  1. Исследуется асимптотическое поведение решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения второго порядка в кольце с двумя независимыми переменными. Для построения асимптотического разложения решения задачи применяется модифицированная схема метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Предлагаемый метод отличается от метода согласования тем, что нарастающие особенности внешнего разложения фактически из него убираются и с помощью вспомогательного асимптотического ряда полностью вносятся во внутренние разложения, а от классического метода пограничных функций здесь пограничные функции убывают степенным характером, а не экспоненциально. Асимптотическое разложение решения представляет собой ряд Пюизё. Полученное асимптотическое разложение решения задачи Дирихле обосновано принципом максимума.

    The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik-Lyusternik-Vasil'eva-Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.

  2. Филиппов А.И., Ахметова О.В., Ковальский А.А.
    Нелинейная задача о фильтрационном поле плоского течения, с. 324-339

    Рассмотрена нелинейная задача о поле давления при одномерной плоской фильтрации, когда изменения плотности скелета, а также фильтрующейся жидкости и давления связаны пропорционально. Для решения задач использован асимптотический метод, основанный на введении в рассматриваемой задаче формального параметра и представлении искомого решения в виде асимптотической формулы по этому параметру. Показано, что постановки соответствующих задач для коэффициентов асимптотического разложения являются линейными, а для их решения могут быть использованы классические методы. Найдены аналитические выражения для коэффициентов асимптотического разложения решения. Показано, что соответствующие коэффициенты разложения остаточного члена текущего номера и все предшествующие ему по тому же формальному параметру, что и для искомого решения, обращаются в нуль. Использованный подход открывает новые возможности решения нелинейных задач фильтрации в неоднородной анизотропной пористой среде.

    Filippov A.I., Akhmetova O.V., Kovalsky A.A.
    Nonlinear problem of the filtration field of a flat flow, pp. 324-339

    The nonlinear problem of the pressure field in the case of one-dimensional planar filtration is considered, when changes in the density of the skeleton, as well as the filtered fluid, and pressure are proportionally related. To solve the problems, an asymptotic method is used, based on the introduction of a formal parameter in the problem under consideration and the representation of the desired solution in the form of an asymptotic formula for this parameter. It is shown that the statements of the corresponding problems for the asymptotic expansion coefficients are linear, and classical methods can be used to solve them. Analytical expressions for the coefficients of asymptotic expansion of the solution have been found. It is shown that the corresponding expansion coefficients of the residual term of the current number and all the preceding ones in the same formal parameter as for the desired solution vanish. The approach used opens up new possibilities for solving nonlinear filtering problems in an inhomogeneous anisotropic porous medium.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref